Dual Zariski Spaces of Modules

dc.contributor.authorCeken, Secil
dc.date.accessioned2024-06-12T10:59:54Z
dc.date.available2024-06-12T10:59:54Z
dc.date.issued2023
dc.departmentTrakya Üniversitesien_US
dc.description.abstractLet R be a commutative ring with identity, M be an R-module, L (M ) denote the set of all submodules of M and G subset of L ( M) \ { 0(M) } . For any submodule N of M, we set GV(d) ( N) = { K is an element of G : K subset of N } and G zeta(d) (M ) = { GV(d) ( N) : N is an element of L (M ) } . Consider chi subset of L ( R) \ { R } , where L (R ) is the set of all ideals of R. We set chi V (I ) = { J is an element of chi : I subset of J } and chi zeta (R ) = { chi V (I ) : I is an element of L (R ) } for any ideal I of R. In this paper, we investigate when, for arbitrary chi and G as above, chi zeta (R ) and G zeta(d) (M ) form a topology and a semimodule, respectively. We investigate the structure of G zeta(d) (M ) in the case that it is a semimodule.en_US
dc.identifier.doi10.1142/S1005386723000445
dc.identifier.endpage584en_US
dc.identifier.issn1005-3867
dc.identifier.issn0219-1733
dc.identifier.issue4en_US
dc.identifier.scopus2-s2.0-85179784156en_US
dc.identifier.scopusqualityQ3en_US
dc.identifier.startpage569en_US
dc.identifier.urihttps://doi.org/10.1142/S1005386723000445
dc.identifier.urihttps://hdl.handle.net/20.500.14551/20618
dc.identifier.volume30en_US
dc.identifier.wosWOS:001115520500007en_US
dc.identifier.wosqualityN/Aen_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherWorld Scientific Publ Co Pte Ltden_US
dc.relation.ispartofAlgebra Colloquiumen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectDual Zariski Semimoduleen_US
dc.subjectChi-Zariski Semiringen_US
dc.subjectCenter Dot-Coprime Submoduleen_US
dc.subjectSubtractive Subspaceen_US
dc.titleDual Zariski Spaces of Modulesen_US
dc.typeArticleen_US

Dosyalar