Biosorption of lead by filamentous fungal biomass-loaded TiO2 nanoparticles
dc.authorid | Bakircioglu Kurtulus, Yasemin/0000-0003-3013-5793 | |
dc.authorid | Akman, Suleyman/0000-0002-8625-783X | |
dc.authorid | Bakircioglu, Dilek/0000-0003-3384-0340 | |
dc.authorwosid | Bakircioglu Kurtulus, Yasemin/Q-2570-2017 | |
dc.authorwosid | Akman, Suleyman/C-1418-2014 | |
dc.authorwosid | Bakircioglu, Dilek/Q-2648-2017 | |
dc.contributor.author | Bakircioglu, Yasemin | |
dc.contributor.author | Bakircioglu, Dilek | |
dc.contributor.author | Akman, Suleyman | |
dc.date.accessioned | 2024-06-12T10:54:41Z | |
dc.date.available | 2024-06-12T10:54:41Z | |
dc.date.issued | 2010 | |
dc.department | Trakya Üniversitesi | en_US |
dc.description.abstract | In this study filamentous fungal biomass-loaded TiO2 nanoparticles were used for the biosorption of lead(II) ions by flow-injection system coupled to flame atomic absorption spectrometry. The effects of pH, sample volume, loading and elution flow rates, eluent type and volume on the recovery of lead were investigated. Lead ions were sorbed on a biosorbent minicolumn at pH 4.0 followed by an elution step using 288 mu L of 1.0 mol/L hydrochloric acid solution. The limit of detection was 0.78 mu g/L. The validation of the described procedure was performed by the analysis of certified reference material (NRC-CNRC NASS-5 seawater). Finally, the presented biosorption procedure was applied to the determination of lead in tap water and seawater samples. Crown Copyright (C) 2010 Published by Elsevier B.V. All rights reserved. | en_US |
dc.identifier.doi | 10.1016/j.jhazmat.2010.02.040 | |
dc.identifier.endpage | 1020 | en_US |
dc.identifier.issn | 0304-3894 | |
dc.identifier.issn | 1873-3336 | |
dc.identifier.issue | 1-3 | en_US |
dc.identifier.pmid | 20211521 | en_US |
dc.identifier.scopus | 2-s2.0-77951498303 | en_US |
dc.identifier.scopusquality | Q1 | en_US |
dc.identifier.startpage | 1015 | en_US |
dc.identifier.uri | https://doi.org/10.1016/j.jhazmat.2010.02.040 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14551/19144 | |
dc.identifier.volume | 178 | en_US |
dc.identifier.wos | WOS:000278056300136 | en_US |
dc.identifier.wosquality | Q1 | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.indekslendigikaynak | PubMed | en_US |
dc.language.iso | en | en_US |
dc.publisher | Elsevier | en_US |
dc.relation.ispartof | Journal Of Hazardous Materials | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Biosorption | en_US |
dc.subject | Lead | en_US |
dc.subject | Titanium Dioxide | en_US |
dc.subject | Filamentous Fungi | en_US |
dc.subject | Flow Injection | en_US |
dc.subject | Solid-Phase Extraction | en_US |
dc.subject | Atomic-Absorption-Spectrometry | en_US |
dc.subject | Online Preconcentration | en_US |
dc.subject | Emission-Spectrometry | en_US |
dc.subject | Amberlite Xad-4 | en_US |
dc.subject | Food Samples | en_US |
dc.subject | Silica-Gel | en_US |
dc.subject | Metal-Ions | en_US |
dc.subject | Trace Lead | en_US |
dc.subject | Water | en_US |
dc.title | Biosorption of lead by filamentous fungal biomass-loaded TiO2 nanoparticles | en_US |
dc.type | Article | en_US |