Buoyancy Driven Heat Transfer of Nanofluids in a Tilted Enclosure

dc.authoridKahveci, Kamil/0000-0003-2492-8690
dc.authorwosidKahveci, Kamil/A-2954-2016
dc.contributor.authorKahveci, Kamil
dc.date.accessioned2024-06-12T10:51:20Z
dc.date.available2024-06-12T10:51:20Z
dc.date.issued2010
dc.departmentTrakya Üniversitesien_US
dc.description.abstractBuoyancy driven heat transfer of water-based nanofluids in a differentially heated, tilted enclosure is investigated in this study. The governing equations (obtained with the Boussinesq approximation) are solved using the polynomial differential quadrature method for an inclination angle ranging from 0 deg to 90 deg, two different ratios of the nanolayer thickness to the original particle radius (0.02 and 0.1), a solid volume fraction ranging from 0% to 20%, and a Rayleigh number varying from 10(4) to 10(6). Five types of nanoparticles, Cu, Ag, CuO, Al2O3, and TiO2 are taken into consideration. The results show that the average heat transfer rate from highest to lowest is for Ag, Cu, CuO, Al2O3, and TiO2. The results also show that for the particle radius generally used in practice (beta=0.1 or beta=0.02), the average heat transfer rate increases to 44% for Ra=10(4), to 53% for Ra=10(5), and to 54% for Ra=10(6) if the special case of theta=90 deg, which also produces the minimum heat transfer rates, is not taken into consideration. As for theta=90 deg, the heat transfer enhancement reaches 21% for Ra=10(4), 44% for Ra=10(5), and 138% for Ra=10(6). The average heat transfer rate shows an increasing trend with an increasing inclination angle, and a peak value is detected. Beyond the peak point, the foregoing trend reverses and the average heat transfer rate decreases with a further increase in the inclination angle. Maximum heat transfer takes place at theta=45 deg for Ra=10(4) and at theta=30 deg for Ra=10(5) and 10(6).en_US
dc.identifier.doi10.1115/1.4000744
dc.identifier.issn0022-1481
dc.identifier.issn1528-8943
dc.identifier.issue6en_US
dc.identifier.scopus2-s2.0-77955286189en_US
dc.identifier.scopusqualityQ2en_US
dc.identifier.urihttps://doi.org/10.1115/1.4000744
dc.identifier.urihttps://hdl.handle.net/20.500.14551/18325
dc.identifier.volume132en_US
dc.identifier.wosWOS:000276273900014en_US
dc.identifier.wosqualityQ2en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherAsmeen_US
dc.relation.ispartofJournal Of Heat Transfer-Transactions Of The Asmeen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectAluminaen_US
dc.subjectComputational Fluid Dynamicsen_US
dc.subjectConfined Flowen_US
dc.subjectCopperen_US
dc.subjectCopper Compoundsen_US
dc.subjectDifferential Equationsen_US
dc.subjectIntegrationen_US
dc.subjectNanofluidicsen_US
dc.subjectNanoparticlesen_US
dc.subjectNatural Convectionen_US
dc.subjectParticle Sizeen_US
dc.subjectPolynomialsen_US
dc.subjectSilveren_US
dc.subjectTitanium Compoundsen_US
dc.subjectTwo-Phase Flowen_US
dc.subjectWateren_US
dc.subjectDifferential Quadrature Solutionen_US
dc.subjectLaminar Mixed Convectionen_US
dc.subjectNatural-Convectionen_US
dc.subjectThermal-Conductivityen_US
dc.subjectTransfer Enhancementen_US
dc.subjectTransfer Augmentationen_US
dc.subjectFlowen_US
dc.subjectSuspensionsen_US
dc.subjectThicknessen_US
dc.subjectCavitiesen_US
dc.titleBuoyancy Driven Heat Transfer of Nanofluids in a Tilted Enclosureen_US
dc.typeArticleen_US

Dosyalar