A new hybrid method combining search and direct based construction ideas to generate all 4 x 4 involutory maximum distance separable (MDS) matrices over binary field extensions
dc.authorid | Akleylek, Sedat/0000-0001-7005-6489 | |
dc.authorid | yilmazguc, gulsum gozde/0000-0003-2127-5735 | |
dc.authorid | Tuncay, Gokhan/0000-0002-4293-4018 | |
dc.authorwosid | yilmazguc, Gulsum Gozde/JXL-1403-2024 | |
dc.authorwosid | Tuncay, Gökhan/HZJ-8217-2023 | |
dc.authorwosid | Akleylek, Sedat/N-2620-2019 | |
dc.contributor.author | Tuncay, Gokhan | |
dc.contributor.author | Sakalli, Fatma Buyuksaracoglu | |
dc.contributor.author | Pehlivanoglu, Meltem Kurt | |
dc.contributor.author | Yilmazguc, Gulsum Gozde | |
dc.contributor.author | Akleylek, Sedat | |
dc.contributor.author | Sakalli, Muharrem Tolga | |
dc.date.accessioned | 2024-06-12T11:08:09Z | |
dc.date.available | 2024-06-12T11:08:09Z | |
dc.date.issued | 2023 | |
dc.department | Trakya Üniversitesi | en_US |
dc.description.abstract | This article presents a new hybrid method (combining search based methods and direct construction methods) to generate all 4 x 4 involutory maximum distance separable (MDS) matrices over F2m. The proposed method reduces the search space complexity at the level of root n, where n represents the number of all 4 x 4 invertible matrices over F-2m to be searched for. Hence, this enables us to generate all 4 x 4 involutory MDS matrices over F(2)3 and F(2)4. After applying global optimization technique that supports higher Exclusive-OR (XOR) gates (e.g., XOR3, XOR4) to the generated matrices, to the best of our knowledge, we generate the lightest involutory/ non-involutory MDS matrices known over F(2)3, F(2)4 and F(2)8 in terms of XOR count. In this context, we present new 4 x 4 involutory MDS matrices over F(2)3, F(2)4 and F(2)8, which can be implemented by 13 XOR operations with depth 5, 25 XOR operations with depth 5 and 42 XOR operations with depth 4, respectively. Finally, we denote a new property of Hadamard matrix, i.e., (involutory and MDS) Hadamard matrix form is, in fact, a representative matrix form that can be used to generate a small subset of all 2(k) x 2(k) involutory MDS matrices, where k > 1. For k = 1, Hadamard matrix form can be used to generate all involutory MDS matrices. | en_US |
dc.identifier.doi | 10.7717/peerj-cs.1577 | |
dc.identifier.issn | 2376-5992 | |
dc.identifier.pmid | 37810342 | en_US |
dc.identifier.scopus | 2-s2.0-85172225590 | en_US |
dc.identifier.scopusquality | Q2 | en_US |
dc.identifier.uri | https://doi.org/10.7717/peerj-cs.1577 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14551/22319 | |
dc.identifier.volume | 9 | en_US |
dc.identifier.wos | WOS:001150437200001 | en_US |
dc.identifier.wosquality | N/A | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.indekslendigikaynak | PubMed | en_US |
dc.language.iso | en | en_US |
dc.publisher | Peerj Inc | en_US |
dc.relation.ispartof | Peerj Computer Science | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | MDS Matrices | en_US |
dc.subject | Involutory Matrices | en_US |
dc.subject | Diffusion Layer | en_US |
dc.subject | A New Hybrid Method | en_US |
dc.subject | Lightweight Cryptography | en_US |
dc.title | A new hybrid method combining search and direct based construction ideas to generate all 4 x 4 involutory maximum distance separable (MDS) matrices over binary field extensions | en_US |
dc.type | Article | en_US |