Many-body solution to the D2 gas filled inertial electrostatic confinement device

dc.authoridKurt, Erol/0000-0002-3615-6926
dc.authoridDURSUN, BEKİR/0000-0002-7741-8873
dc.authorwosidKurt, Erol/K-2015-2012
dc.authorwosidDURSUN, BEKİR/AAH-9457-2021
dc.contributor.authorDursun, Bekir
dc.contributor.authorKurt, Erol
dc.date.accessioned2024-06-12T11:02:22Z
dc.date.available2024-06-12T11:02:22Z
dc.date.issued2016
dc.departmentTrakya Üniversitesien_US
dc.description3rd European Conference on Renewable Energy Systems (ECRES) -- OCT 07-10, 2015 -- Kerner, TURKEYen_US
dc.description.abstractThe simulations of the electrostatic confinement fusion unit have been presented in low magnetic field case, which is produced by a central wire system inside the grid system of the chamber. The time-dependent simulations have been realized by the time integration together with the finite difference elements (FDE). Especially, FDEs have been used to compute the chamber potential and magnetic field interaction of the particles, namely electrons and ions with the chamber structures. The central wires exert a magnetic field in the azimuthal direction inside the central grid. It is found that this field induces helical trajectories on the particles. The model unit has six cathodes around the center. The system is simulated in a Deuterium media which is fully ionized. Considering the boundaries of the unit, the electrical and magnetic forces are determined by using the many-body technique with the particle-chamber and particle particle interactions. According to the results, many of the electrons can be repelled by the negative potential; however the ions have changeable trajectories with slower attitudes. The ion temperature has been found as T-i = 6.9 keV at the end of 6 mu s. The ion distribution proves that 45% of ions exist inside the grid however the increasing trend of ion temperature proves that this value is to be increased further. The velocity distribution shows a maximum around 5 x 10(5) m/s, however there are also highly energetic particles. (C) 2015 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.en_US
dc.description.sponsorshipGazi Univ,Akdeniz Univen_US
dc.identifier.doi10.1016/j.ijhydene.2015.12.135
dc.identifier.endpage12554en_US
dc.identifier.issn0360-3199
dc.identifier.issn1879-3487
dc.identifier.issue29en_US
dc.identifier.scopus2-s2.0-84953410790en_US
dc.identifier.scopusqualityQ1en_US
dc.identifier.startpage12546en_US
dc.identifier.urihttps://doi.org/10.1016/j.ijhydene.2015.12.135
dc.identifier.urihttps://hdl.handle.net/20.500.14551/21260
dc.identifier.volume41en_US
dc.identifier.wosWOS:000380869700011en_US
dc.identifier.wosqualityQ1en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherPergamon-Elsevier Science Ltden_US
dc.relation.ispartofInternational Journal Of Hydrogen Energyen_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectFusionen_US
dc.subjectElectrostatic Confinementen_US
dc.subjectMagnetic Fielden_US
dc.subjectMany-Bodyen_US
dc.subjectPotential Well Structureen_US
dc.subjectPlasma-Confinementen_US
dc.subjectFusion Deviceen_US
dc.titleMany-body solution to the D2 gas filled inertial electrostatic confinement deviceen_US
dc.typeConference Objecten_US

Dosyalar