Nonlinear wave modulation in nanorods using nonlocal elasticity theory

Küçük Resim Yok

Tarih

2018

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Walter de Gruyter Gmbh

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

In this study, nonlinear wave modulation in nanorods is examined on the basis of nonlocal elasticity theory. Eringen's nonlocal elasticity theory is employed to derive nonlinear equations for the motion of nanorods. The analysis of the modulation of axial waves in nonlocal elastic media is performed, and the reductive perturbation method is used for the solution of the nonlinear equations. The propagation of weakly nonlinear and strongly dispersive waves is investigated, and the nonlinear Schrodinger (NLS) equation is acquired as an evolution equation. For the purpose of a numerical investigation of the nonlocal impacts on the NLS equation, it has been investigated whether envelope solitary wave solutions exist by utilizing the physical and geometric features of the carbon nanotubes. Amplitude dependent wave frequencies, phase and group velocities have been obtained and they have compared for the linear local, the linear nonlocal, the nonlinear local and the nonlinear nonlocal cases.

Açıklama

Aydogdu, Metin (Trakya author) Gul, Ufuk (Trakya author)

Anahtar Kelimeler

Nanorods, Nonlocal Elasticity, Wave Modulation, Reductive Perturbation Technique, Thermal-Mechanical Vibration, Longitudinal Magnetic-Field, Walled Carbon Nanotube, Propagation, Instability, Model, Equations, Media

Kaynak

International Journal of Nonlinear Sciences and Numerical Simulation

WoS Q Değeri

Q3

Scopus Q Değeri

N/A

Cilt

19

Sayı

7-8

Künye

Gaygusuzoglu, G., Aydogdu, M., & Gul, U. (2018). Nonlinear Wave Modulation in Nanorods Using Nonlocal Elasticity Theory. International Journal of Nonlinear Sciences and Numerical Simulation, 19(7-8), 709-719.