Comparison of four different time series methods to forecast hepatitis A virus infection

dc.contributor.authorTure, M
dc.contributor.authorKurt, I
dc.date.accessioned2024-06-12T11:09:05Z
dc.date.available2024-06-12T11:09:05Z
dc.date.issued2006
dc.departmentTrakya Üniversitesien_US
dc.description.abstractHepatitis A virus (HAV) infection is not a problem of only developing countries, but also of developed countries. In this study, we compared time series prediction capabilities of three artificial neural networks (ANN) algorithms (multi-layer perceptron (MLP). radial basis function (RBF), and time delay neural networks (TDNN)), and auto-regressive integrated moving average (ARIMA) model to HAV forecasting. To assess the effectiveness of these methods, we used in forecasting 13 years of time series (January 1992-June 2004) monthly records for HAV data, in Turkey. Results show that MLP is more accurate and performs better than RBF, TDNN and ARIMA model. (c) 2005 Elsevier Ltd. All rights reserved.en_US
dc.identifier.doi10.1016/j.eswa.2005.09.002
dc.identifier.endpage46en_US
dc.identifier.issn0957-4174
dc.identifier.issn1873-6793
dc.identifier.issue1en_US
dc.identifier.scopus2-s2.0-33644758281en_US
dc.identifier.scopusqualityQ1en_US
dc.identifier.startpage41en_US
dc.identifier.urihttps://doi.org/10.1016/j.eswa.2005.09.002
dc.identifier.urihttps://hdl.handle.net/20.500.14551/22683
dc.identifier.volume31en_US
dc.identifier.wosWOS:000236903700005en_US
dc.identifier.wosqualityQ1en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherPergamon-Elsevier Science Ltden_US
dc.relation.ispartofExpert Systems With Applicationsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectNeural Networksen_US
dc.subjectMLPen_US
dc.subjectRBFen_US
dc.subjectTDNNen_US
dc.subjectARIMAen_US
dc.subjectHepatitis Aen_US
dc.subjectForecastingen_US
dc.subjectNeural-Networken_US
dc.subjectModelen_US
dc.subjectPredictionen_US
dc.titleComparison of four different time series methods to forecast hepatitis A virus infectionen_US
dc.typeArticleen_US

Dosyalar