Active carbon/graphene hydrogel nanocomposites as a symmetric device for supercapacitors

dc.authoridGEÇGEL, ÜNAL/0000-0002-4277-2127
dc.authoridAtes, Murat/0000-0002-1806-0330
dc.authoridüner, osman/0000-0001-6950-6753
dc.authoridCandan, Idris/0000-0002-9950-713X
dc.authorwosidGEÇGEL, ÜNAL/AAC-9487-2019
dc.authorwosidAtes, Murat/G-3798-2012
dc.authorwosidüner, osman/B-5357-2018
dc.authorwosidCandan, Idris/F-4951-2018
dc.contributor.authorAtes, Murat
dc.contributor.authorCinar, Damla
dc.contributor.authorCaliskan, Sinan
dc.contributor.authorGecgel, Unal
dc.contributor.authorUner, Osman
dc.contributor.authorBayrak, Yuksel
dc.contributor.authorCandan, Idris
dc.date.accessioned2024-06-12T11:16:14Z
dc.date.available2024-06-12T11:16:14Z
dc.date.issued2016
dc.departmentTrakya Üniversitesien_US
dc.description.abstractActivated carbons (ACs) are successfully synthesized from Elaeagnus grain by a simple chemical synthesis methodology and demonstrated as novel, suitable supercapacitor electrode materials for graphene hydrogel (GH)/AC nanocomposites. GH/AC nanocomposites are synthesized via hydrothermal process at temperature of 180 degrees C. The low-temperature thermal exfoliation approach is convenient for mass production of graphene hydrogel (GH) at low cost and it can be used as electrode material for energy storage applications. The GH/AC nanocomposites exhibit better electrochemical performances than the pure GH. Electrochemical performance of the electrodes is studied by cyclic voltammetry, and galvanostatic charge-discharge measurements in 1.0 M H2SO4 solution. A remarkable specific capacitance of 602.36 Fg(1) (based on GH/AC nanocomposites for 0.4 g AC) is obtained at a scan rate of 1 mVs(1) in 1 M H2SO4 solution and 155.78 Fg(1) for GH. The specific capacitance was increased 3.87 times for GH/AC compared to GH electrodes. Moreover, the GH/AC nanocomposites for 0.2 g AC present excellent long cycle life with 99.8% specific capacitance retained after 1000 charge/discharge processes. Herein, ACs prepared from Elaeagnus grain are synthesized GH and AC supercapacitor device for high-performance electrical energy storage devices as a promising substitute to conventional electrode materials for EDLCs.en_US
dc.identifier.doi10.1080/1536383X.2016.1174115
dc.identifier.endpage434en_US
dc.identifier.issn1536-383X
dc.identifier.issn1536-4046
dc.identifier.issue7en_US
dc.identifier.scopus2-s2.0-84978085709en_US
dc.identifier.scopusqualityQ2en_US
dc.identifier.startpage427en_US
dc.identifier.urihttps://doi.org/10.1080/1536383X.2016.1174115
dc.identifier.urihttps://hdl.handle.net/20.500.14551/24248
dc.identifier.volume24en_US
dc.identifier.wosWOS:000380155500003en_US
dc.identifier.wosqualityQ3en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherTaylor & Francis Incen_US
dc.relation.ispartofFullerenes Nanotubes And Carbon Nanostructuresen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectThermal Exfoliationen_US
dc.subjectSymmetric Supercapacitoren_US
dc.subjectEnergy Densityen_US
dc.subjectGraphene Hydrogelen_US
dc.subjectActive Carbonen_US
dc.subjectPower Densityen_US
dc.subjectHigh-Performance Supercapacitorsen_US
dc.subjectElectrochemical Energy-Storageen_US
dc.subjectGraphene-Based Compositesen_US
dc.subjectReduced Graphite Oxideen_US
dc.subjectChemical Activationen_US
dc.subjectPorous Carbonen_US
dc.subjectSurface-Areaen_US
dc.subjectRemovalen_US
dc.subjectConstructionen_US
dc.subjectElectrodesen_US
dc.titleActive carbon/graphene hydrogel nanocomposites as a symmetric device for supercapacitorsen_US
dc.typeArticleen_US

Dosyalar