Performance assessment of a phase change charging mode in a vertical thermal energy storage system

dc.authoridEzan, Mehmet Akif/0000-0002-5966-9791
dc.authoridASKER, MUSTAFA/0000-0001-5989-3366
dc.authorwosidEzan, Mehmet Akif/A-5262-2012
dc.contributor.authorAsker, Mustafa
dc.contributor.authorAkal, Dincer
dc.contributor.authorEzan, Mehmet Akif
dc.date.accessioned2024-06-12T11:00:08Z
dc.date.available2024-06-12T11:00:08Z
dc.date.issued2022
dc.departmentTrakya Üniversitesien_US
dc.description.abstractIn this work, the performance of a charging mode of a thermal energy storage system is investigated numerically, and results are assessed considering the first law and second law perspectives. The storage unit comprises parallel plates positioned vertically, and the heat transfer fluid flows within the spacing between the plates. The melting process of phase change material inside a rectangular enclosure is simulated considering the natural convection using an in-house model codded in C++. The proposed model is validated with the numerical and experimental research from the literature. A parametric analysis is carried out to explore the influence of heat transfer inlet temperature and aspect ratio on the unit's first law and second law performance indicators. Analyses are also conducted by disregarding the natural convection to assess the convective mode of heat transfer on the time-wise variation of the storage effectiveness and stored exergy. The results revealed that for the highest inlet temperature of the heat transfer fluid, the stored energy value increases from 133.85 to 250 kJ then drops to 240 kJ by varying the aspect ratio from 0.25 to 0.50 and from 0.50 to 1.00, respectively, for the natural convection dominated melting. On the other hand, regarding effectiveness, both with and without natural convection modes show the same aspect ratio variations trend. The effectiveness reduces from 0.9 to 0.40 by increasing the aspect ratio from 0.25 to 1.00 for the natural convection-dominated melting mode. The effectiveness drops from 0.62 to 0.16 for the same variation in the aspect ratio for the conduction-dominated melting mode. Besides, it is found that the highest stored exergy is observed in Case 9 w/NC situation with a stored exergy value of 13.3 kJ. The exergy efficiency changes approximately between 65% and 81% for all cases.en_US
dc.identifier.doi10.1002/er.7663
dc.identifier.endpage7625en_US
dc.identifier.issn0363-907X
dc.identifier.issn1099-114X
dc.identifier.issue6en_US
dc.identifier.scopus2-s2.0-85122764138en_US
dc.identifier.scopusqualityQ1en_US
dc.identifier.startpage7610en_US
dc.identifier.urihttps://doi.org/10.1002/er.7663
dc.identifier.urihttps://hdl.handle.net/20.500.14551/20699
dc.identifier.volume46en_US
dc.identifier.wosWOS:000742172700001en_US
dc.identifier.wosqualityQ1en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherWileyen_US
dc.relation.ispartofInternational Journal Of Energy Researchen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectEffectivenessen_US
dc.subjectMeltingen_US
dc.subjectNatural Convectionen_US
dc.subjectSecond Lawen_US
dc.subjectThermal Energy Storageen_US
dc.subjectNatural-Convectionen_US
dc.subjectHeat-Transferen_US
dc.subjectUniten_US
dc.subjectPcmen_US
dc.subjectSolidificationen_US
dc.subjectEnhancementen_US
dc.subjectMetalen_US
dc.subjectWateren_US
dc.subjectSlabsen_US
dc.subjectWallen_US
dc.titlePerformance assessment of a phase change charging mode in a vertical thermal energy storage systemen_US
dc.typeArticleen_US

Dosyalar