Yazar "Tuncay, Gokhan" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Generating binary diffusion layers with maximum/high branch numbers and low search complexity(Wiley-Hindawi, 2016) Akleylek, Sedat; Sakalli, Muharrem Tolga; Ozturk, Emir; Mesut, Andac Sahin; Tuncay, GokhanIn this paper, we propose a new method to generate n x n binary matrices (for n = k . 2(t) where k and t are positive integers) with a maximum/high of branch numbers and a minimum number of fixed points by using 2(t) x 2(t) Hadamard (almost) maximum distance separable matrices and k x k cyclic binary matrix groups. By using the proposed method, we generate n x n (for n = 6, 8, 12, 16, and 32) binary matrices with a maximum of branch numbers, which are efficient in software implementations. The proposed method is also applicable with m x m circulant matrices to generate n x n (for n = k . m) binary matrices with a maximum/high of branch numbers. For this case, some examples for 16 x 16, 48 x 48, and 64 x 64 binary matrices with branch numbers of 8, 15, and 18, respectively, are presented. Copyright (C) 2016 John Wiley & Sons, Ltd.Öğe A new hybrid method combining search and direct based construction ideas to generate all 4 x 4 involutory maximum distance separable (MDS) matrices over binary field extensions(Peerj Inc, 2023) Tuncay, Gokhan; Sakalli, Fatma Buyuksaracoglu; Pehlivanoglu, Meltem Kurt; Yilmazguc, Gulsum Gozde; Akleylek, Sedat; Sakalli, Muharrem TolgaThis article presents a new hybrid method (combining search based methods and direct construction methods) to generate all 4 x 4 involutory maximum distance separable (MDS) matrices over F2m. The proposed method reduces the search space complexity at the level of root n, where n represents the number of all 4 x 4 invertible matrices over F-2m to be searched for. Hence, this enables us to generate all 4 x 4 involutory MDS matrices over F(2)3 and F(2)4. After applying global optimization technique that supports higher Exclusive-OR (XOR) gates (e.g., XOR3, XOR4) to the generated matrices, to the best of our knowledge, we generate the lightest involutory/ non-involutory MDS matrices known over F(2)3, F(2)4 and F(2)8 in terms of XOR count. In this context, we present new 4 x 4 involutory MDS matrices over F(2)3, F(2)4 and F(2)8, which can be implemented by 13 XOR operations with depth 5, 25 XOR operations with depth 5 and 42 XOR operations with depth 4, respectively. Finally, we denote a new property of Hadamard matrix, i.e., (involutory and MDS) Hadamard matrix form is, in fact, a representative matrix form that can be used to generate a small subset of all 2(k) x 2(k) involutory MDS matrices, where k > 1. For k = 1, Hadamard matrix form can be used to generate all involutory MDS matrices.