Yazar "Topcuoglu, Nursen" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Effect of different beverages on surface properties and cariogenic biofilm formation of composite resin materials(Wiley, 2021) Kurt, Aysegul; Ozyurt, Esra; Topcuoglu, NursenThe consumption of certain beverages may affect the physical and biological properties of resin composites (RCs) according to type. This in vitro study aimed to evaluate the surface properties and cariogenic biofilm formation in microhybrid and nanohybrid RCs after immersion in different beverages. The effects of four beverages (distilled water-control, tea, coffee, and cola) on two RCs (microhybrid and nanohybrid) were evaluated. Changes in the surface properties were evaluated for each group using surface roughness measurement (n = 10), scanning electron microscopy (SEM) (n = 4) observation, and energy-dispersive X-ray spectroscopy (EDX) (n = 5) analysis. In vitro Streptococcus mutans biofilm formation on the specimens of each group was determined using confocal laser scanning microscopy and SEM analysis (n = 14). The data were analyzed using two-way analysis of variance, with Bonferroni as a post-hoc test and Pearson's correlation (p < .05). Microhybrid RC presented more surface roughness (p = .014) and cariogenic biofilm formation (p = .040). The surface roughness (F = 0.733, p = .536) and cariogenic biofilm formation (F = 1.685, p = .181) values were not affected by the beverages. However, according to qualitative SEM and EDX measurements, these parameters varied depending on the beverage groups. No correlation was found between surface roughness and cariogenic biofilm formation (r = 0.135, p = .287). Microhybrid RCs had a rougher surface and a higher amount of cariogenic biofilm formation than nanohybrid RCs after being subjected to different beverages.Öğe Effect of different polishing techniques for composite resin materials on surface properties and bacterial biofilm formation(Elsevier Sci Ltd, 2019) Kurt, Aysegul; Cilingir, Aylin; Bilmenoglu, Caglar; Topcuoglu, Nursen; Kulekci, GuvenObjectives: Both direct and indirect techniques are used for composite resin material (CRM) restorations. Polishing processes are needed in both techniques after intraoral adjustment. However, it is unclear as to which polishing technique should be preferred with respect to decreasing biofilm. The purpose of this in vitro study was to evaluate the surface properties and Streptococcus mutans biofilm formation on direct and indirect CRMs after using different polishing techniques. Methods: Two CRMs (direct and indirect) and four polishing techniques (aluminium oxide discs, diamond polishing paste, aluminium oxide polishing paste, and silicon carbide brush) were evaluated. The specimens were prepared for taking scanning electron microscopy images (n = 2) and determining surface roughness, surface free energy, and bacterial biofilm formation (BBF) with colony-forming unit counting and confocal laser scanning microscopy assays (n = 7). The data were analysed using two-way analysis of variance with Bonferroni as a post hoc test and Pearson's correlation (p < .05). Results: The surface roughness values in the control group were higher than those in the diamond polishing paste group (p = 0.025), but the values in the aluminium oxide polishing paste and silicon carbide brush groups were comparable with those in the control group (p = 0.156 and p = 1.000, respectively). The highest surface free energy values were recorded in the silicon carbide brush group (p < 0.001), whereas there were no differences found among the other groups (p > 0.05). The highest BBF was seen in the silicon carbide brush (p < 0.001) and direct CRM (p < 0.001) groups. Conclusion: BBF on the surface of direct CRMs differed from that on indirect CRMs after polishing the surface. The tested polishing techniques significantly influenced surface properties and BBF. Clinical significance: In situations that require the intraoral adjustment of CRMs, polishing with a diamond polishing paste seems to be a good option to polish the surface of both direct and indirect CRMs because the diamond polishing paste results better in terms of decreasing biofilm formation and improving surface properties.