Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • DSpace İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Quynh, T. Cong" seçeneğine göre listele

Listeleniyor 1 - 1 / 1
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Küçük Resim Yok
    Öğe
    On modules and rings in which complements are isomorphic to direct summands
    (Taylor & Francis Inc, 2022) Karabacak, Fatih; Kosan, M. Tamer; Quynh, T. Cong; Tasdemir, Ozgur
    A right R-module M is virtually extending (or CIS) if every complement submodule of M is isomorphic to a direct summand of M, and M is called a virtually C2-module if every complement submodule of M which is isomorphic to a direct summand of M is itself a direct summand. The class of virtually extending modules (respectively, virtually C2-modules) is a strict and simultaneous generalization of extending modules (respectively, unifies extending modules and C2-modules): M is a semisimple module if and only if M is virtually semisimple and C2, and M is an extending module if and only if M is virtually extending and virtually C2. Furthermore, every virtually simple right R-module is injective if and only if R is a right V-ring and the class of virtually simple right R-modules coincides with the class of simple right R-modules. Among other results, we show that (1) if all cyclic sub-factors of a cyclic weakly co-Hopfian right R-module M are virtually extending, then M is a finite direct sum of uniform submodules; (2) every distributive virtually extending module over any Noetherian ring is a direct sum of uniform submodules; (3) over a right Noetherian ring, every virtually extending module satisfies the Schroder-Bernstein property; (4) being virtually extending (VC2) is a Morita invariant property; (4) if M circle plus E(M) is a VC2-module where E(-) denotes the injective hull, then M is injective.

| Trakya Üniversitesi | Kütüphane | Açık Erişim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Edirne, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim