Yazar "Ozgen, Metin" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Association Between Thr21Met and Ser89Asn Polymorphisms of the Urotensin II Gene and Systemic Sclerosis(J Rheumatol Publ Co, 2012) Pehlivan, Yavuz; Gogebakan, Bulent; Oztuzcu, Serdar; Ozgen, Metin; Cetin, Gozde Yildirim; Bayraktar, Recep; Cengiz, BeyhanObjective. Systemic sclerosis (SSc) is an autoimmune chronic fibrotic disorder. Urotensin II (U-IT) is predominantly a vasoactive peptide with fibrotic and prothrombotic features. Like endothelin-1 (ET-1), U-II could play an important role in SSc pathogenesis. We evaluated the possible role of the U-II gene polymorphisms (Thr21Met and Ser89Asn) in the genetic susceptibility to SSc in a Turkish population. Methods. A total of 189 patients with SSc and 205 healthy controls were enrolled in our study. We analyzed the genotype and allele frequencies of the U-II (UTS2) gene polymorphisms Thr21Met and Ser89Asn in patients with SSc and in controls. Results. We found that the Thr21Met polymorphism of the UTS2 gene was markedly associated with the risk of developing SSc (p < 0.0001), but there was no relationship between the Ser89Asn polymorphism and SSc (p > 0.05). Two haplotypes (MS and TS) were markedly associated with SSc (p < 0.05). There were significant associations between the genotype and allele frequencies of UTS2 gene Thr21Met polymorphism and cases with diffuse or limited SSc, systemic or lung involvement, finger flexion deformity, pitting scars at the fingertips, positive anticentromere, or positive antitopoisomerase I antibody groups. Conclusion. Our study shows the association between Thr21Met, but not Ser89Asn, in the UTS2 gene and SSc. The results strongly suggest that this single-nucleotide polymorphism may be an important risk factor in the development of SSc, and a powerful indicator of severe skin and lung involvement in patients with SSc. (First Release Nov I 2011; J Rheumatol 2012;39:106-11; doi:10.3899/jrheum.110509)Öğe EGFR blocker lapatinib inhibits the synthesis of matrix metalloproteinases from synovial fibroblasts(Tubitak Scientific & Technological Research Council Turkey, 2022) Kehribar, Demet Yalcin; Emmungil, Hakan; Turkmen, Nese Basak; Ciftci, Osman; Salva, Emine; Ozgen, MetinBackground/aim: Epidermal growth factor receptor (EGFR) family members and their associated ligands may be related to bone and joint destruction in rheumatoid arthritis. Matrix metalloproteinases are responsible for joint and bone tissue degradation. This study is intended to investigate the effect of epidermal growth factor receptor inhibition by lapatinib on the synthesis of matrix metalloproteinases in in vitro. Materials and methods: Synovial fibroblast cell culture was obtained from a patient with rheumatoid arthritis who underwent knee arthroplasty. Interleukin-1 beta (IL-1 beta) and tumor necrosis factor-alpha (TNF-alpha) were added to the cell culture to stimulate synovial fibroblast cells and create an inflammatory character. Understimulated and nonstimulated conditions, lapatinib was applied to the culture in four different concentrations of 25, 50, 100, and 200 mu mol. Then, matrix metalloproteinase -1, -3, and, -13 levels were assessed. Results: When stimulated with IL-1 beta and TNF-alpha, the synthesis of matrix metalloproteinases from synovial fibroblast was increased significantly. When lapatinib is added to the stimulated synovial fibroblasts, matrix metalloproteinases synthesis is significantly suppressed. Conclusion: Inhibition of the EGFR pathway with lapatinib suppresses matrix metalloproteinases synthesis. Our results suggest EGFR pathway inhibition may be a promising option to prevent joint destruction in the treatment of rheumatoid arthritis.