Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • DSpace İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Karabacak, Fatih" seçeneğine göre listele

Listeleniyor 1 - 3 / 3
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Küçük Resim Yok
    Öğe
    Generalized SIP-modules
    (Hacettepe Univ, Fac Sci, 2019) Tasdemir, Ozgur; Karabacak, Fatih
    We say an R-module M has the generalized summand intersection property (briefly GSIP), if the intersection of any two direct summands is isomorphic to a direct summand. This is a generalization of SIP modules. In this note, the characterization of this property over rings and modules is investigated and some useful propositions obtained in SIP modules are generalized to GSIP modules.
  • Küçük Resim Yok
    Öğe
    On modules and rings in which complements are isomorphic to direct summands
    (Taylor & Francis Inc, 2022) Karabacak, Fatih; Kosan, M. Tamer; Quynh, T. Cong; Tasdemir, Ozgur
    A right R-module M is virtually extending (or CIS) if every complement submodule of M is isomorphic to a direct summand of M, and M is called a virtually C2-module if every complement submodule of M which is isomorphic to a direct summand of M is itself a direct summand. The class of virtually extending modules (respectively, virtually C2-modules) is a strict and simultaneous generalization of extending modules (respectively, unifies extending modules and C2-modules): M is a semisimple module if and only if M is virtually semisimple and C2, and M is an extending module if and only if M is virtually extending and virtually C2. Furthermore, every virtually simple right R-module is injective if and only if R is a right V-ring and the class of virtually simple right R-modules coincides with the class of simple right R-modules. Among other results, we show that (1) if all cyclic sub-factors of a cyclic weakly co-Hopfian right R-module M are virtually extending, then M is a finite direct sum of uniform submodules; (2) every distributive virtually extending module over any Noetherian ring is a direct sum of uniform submodules; (3) over a right Noetherian ring, every virtually extending module satisfies the Schroder-Bernstein property; (4) being virtually extending (VC2) is a Morita invariant property; (4) if M circle plus E(M) is a VC2-module where E(-) denotes the injective hull, then M is injective.
  • Küçük Resim Yok
    Öğe
    A Research on the Generalizations of Modules Whose Submodules are Isomorphic to a Direct Summand
    (2024) Karabacak, Fatih; Taşdemir, Özgür
    A module M is called virtually semisimple (resp. virtually extending) if every submodule (resp. complement submodule) of M is isomorphic to a direct summand of M. It is known that virtually extending modules is a generalization of virtually semisimple modules. In this paper, the relationships between virtually extending modules and other generalizations of virtually semisimple modules are examined. Moreover, we introduce a new generalization of virtually semisimple modules; namely CH modules: We say a module M is a c-epi-retractable (or briefly CH module) if any complement submodule of M is a homomorphic image of M. CH modules contains the class of virtually extending modules and the class of epi-retractable modules. We also give some basic properties of this new module class.

| Trakya Üniversitesi | Kütüphane | Açık Erişim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Edirne, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim