Yazar "Capuzzi, P." seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Condensation of two-dimensional harmonically confined bosons with Bessel-type interactions(Amer Physical Soc, 2011) Mese, A. I.; Capuzzi, P.; Aktas, S.; Akdeniz, Z.; Okan, S. E.We study the ground-state configurations of few interacting bosons confined in two dimensions by anisotropic harmonic potentials. By means of variational calculations, including correlation effects, we show that the arrangement of bosons strongly depends on the strength of the repulsive interaction and the anisotropy of the confinement. We compute the condensate fraction of the system and found that by increasing the anisotropy of the potential a weaker interaction suffices to destroy the condensate and favors the emergence of a crystal-like structure.Öğe Coulomb crystallites from harmonically confined charged bosons in two dimensions(Iop Publishing Ltd, 2008) Mese, A. I.; Capuzzi, P.; Akdeniz, Z.; Okan, S. E.; Tosi, M. P.We exploit rotational-symmetry breaking in the one-body density to examine the formation of structures in systems of N strongly coupled charged bosons with logarithmic repulsions inside isotropic two-dimensional harmonic traps, with N in the range from 2 to 7. The results serve as a map for ordered arrangements of vortices in a trapped Bose-Einstein condensate. Two types of N-body wavefunctions are assumed: (i) a permanent vertical bar psi(WM)> of N identical Gaussian orbitals centred at variationally determined sites, and (ii) a permanent vertical bar psi(SM)> of N orthogonal orbitals built from harmonic-oscillator energy eigenstates. With increasing coupling strength, the bosons in the vertical bar psi(WM)> orbitals localize into polygonal-ringlike crystalline patterns ('Wigner molecules'), whereas the wavefunctions vertical bar psi(SM)> describe low energy excited states containing delocalized bosons as in supersolid crystallites ('supermolecules'). For N = 2 at strong coupling both states describe a Wigner dimer.