ALÜMİNYUM ESASLI KOMPOZİT
KÖPÜK ÜRETİMİ VE KARAKTERİZASYONU
SÜLEYMAN İSMAİL ÇAĞLAR
Yüksek Lisans Tezi
MAKİNA MÜHENDİSLİĞİ ANABİLİM DALI
Danışman
Yrd. Doç. Dr. NİLHAN ÜRKMEZ TAŞKIN
2009
EDİRNE
ALÜMİNYUM ESASLI KOMPOZİT KÖPÜK ÜRETİMİ VE KARAKTERİZASYONU

Mak. Müh. SÜLEYMAN İSMAIL ÇAĞLAR

Yüksek Lisans Tezi

MAKİNA MÜHENDİSLİĞİ ANABİLİM DALI
YRD. DOÇ. DR. NİLHAN ÜRKMEZ TAŞKIN

2009
EDİRNE
İÇİNDEKİLER

İÇİNDEKİLER .. I
ÖZET ... IV
ABSTRACT .. V
ÖNSÖZ ... VI
TEŞEKKÜR ... VII
1. GİRİŞ .. 1
1.1. Metal Köpüklerin Tarihçesi .. 2
1.2. Metal Köpüklerin Sınıflandırılması ... 3
 1.2.1. Hücresel (selüler) metaller .. 3
 1.2.2. Gözenekli (poroz) metaller ... 3
 1.2.3. Metal köpükler ... 3
 1.2.4. Katı köpükler .. 3
1.3. Metal Köpüklerin Kullanım Alanları .. 4
 1.3.1. Metal köpüklerin çişitli endüstriyel sektörlerdeki yapısallar uygulamaları....... 4
 1.3.2. Fonksiyonel uygulamalar için hücresel metaller ... 11
 1.3.3. Dekorasyon ve sanat için hücresel malzemeler .. 14
 1.3.4. Uygulama seçimlerinin belirlenmesi .. 15
2. METAL KÖPÜK ÜRETİM YÖNTEMLERİ .. 16
2.1. Metal Gaz Enjeksiyonu ... 17
2.2. Gaz Brakan Partiküllerin Eriyin İçinde Çözülmesi ... 19
2.3. Yarı Katı İçinde Gaz Birakan Partikül Çözülmesi .. 21
2.4. Polimer Yada Balmumu Prekürsörü Mastar Olarak Kullanarak Yapılan Döküm 22
2.5. Hücresel Preformlar Üzerine Metal Kaplanması .. 24
2.6. Hapsedilmiş Gaz Genişlemesi ... 25
2.7. Boş Kürek Yapılar ... 27
2.8. Bir Tanesi Eriyebilen İki Malzemenin Yeniden Sıkıtırlarak Dökümü 31
2.9. Gaz-Metal Ötektik Katlaştırma ... 32
3. HÜCRESEL METALLERİN KARAKTERİZASYON YÖNTEMLERİ 35
3.1. Tahribatsız Muayene ... 35
3.1.1. Yoğunluk ölçümleri ... 35
3.1.2. Boya nüfuz etirme ölçümleri .. 35
3.1.3. X-İşn radyoskopi ve radyografisi .. 35
3.1.4. X-İşn ölçümlü tomografi ... 36
3.1.5. Girdap akım algılama ... 36
3.1.6. Akustik ölçümler ... 36
3.1.7. Titreşimsel analiz .. 36
3.1.8. Gözeneklilik ve geçirgenlik .. 36
3.1.9. Elektriksel ve ısl iletim ölçümleri .. 37
3.1.10. Diğer metotlar ... 37
3.2. Tahribatlı Muayene ... 37
3.2.1. Optik suret analizi ... 37
3.2.2. Mekanik testler .. 37
3.2.3. Korozyon testi ... 38
4. LİTERATÜR ARAŞTIRMASI ... 39
5. DENEYSEL ÇALIŞMALAR .. 43
5.1. Kompozit Köpük Üretimi .. 43
5.1.1. Malzeme Seçimi .. 43
5.1.1.1 TiH₂ Tozlarının İşlenmesi ... 44
5.1.2 Deney Düzeni .. 45
5.1.2.1 Kompozit Köpük Hazırlama Ünitesi ... 45
5.1.2.2. Döküm Kalıpları .. 47
5.1.3. Yarı-katı Karıştırma Yöntemiyile Metal Köpük Üretimi 47
5.1.3.1. Alüminyum Alaşımının Yarı-katı Sıcaklık Aralıklarının Belirlenmesi .. 47
5.1.3.2. Kompozit Metal Köpük Üretimi ve Üretim Parametrelerinin İncelenmesi .. 49
5.2. Karakterizasyon ... 50
5.2.1. Özgül Ağırlıkların Tespit Edilmesi ... 50
5.2.2. Mikro Yapı İnceleme ... 50
6. DENEYSEL SONUÇLAR VE DEĞERLENDİRME 52
6.1. TiH₂ Tozlarının İşlenmesi .. 52
6.2. Kalıp Malzemesi Belirlenmesi İçin Deneme Sonuçları 53
6.3. Özgül Ağırlıklar ve Gözenek Oranları ... 55
6.4. Proses Değişkenlerinin Belirlenmesi ... 56
6.4.1. Zamanın Yoğunluk Değişimine ve Köpük Oluşumuna Etkisi………………… 56
6.4.2. TiH₂ Miktarının Yoğunluk Değişimine ve Köpük Oluşumuna Etkisi……… 58
6.4.3. SiC Miktarının Yoğunluğu ve Köpük Yapısına Etkisi………………… 59
6.4.4. Döküm Sıcaklığının Köpük Oluşumuna Etkisi………………………… 60
6.4.5. Farklı Boyutta TiH₂ Tozlarının Etkisi………………………………… 61
6.4.6. TiH₂ Tozlarına Isıl İşlem Yapılmasının Köpük Oluşumuna Etkisi……… 61
6.4.7. SiC Boyutunun Etkisi………………………………………………………… 63
6.5. Mikro Yapı İncelemeleri…………………………………………………………… 63
6.6. Tarama Elektron Mikroskobu EDS Analiz Sonuçları……………………… 65
7. SONUÇLAR………………………………………………………………………… 69
8. KAYNAKLAR………………………………………………………………………… 71
ÖZET

Bu çalışmada AlMg3 (EN AW 5754) Alüminyum aładı, yarı-katı halde değişik % ağırlık oranlarında köpürtme ajanı (TiH₂) katılmak suretiyle, farklı sürelerde bekletilerek köpürtülmuştur. Köpük malzeme farklı oranlarda SiCₚ ile takviye edilerek, takviyenin köpük stabilizasyonuna etkisi incelenmiştir. Üretilen kompozit köpüklerin rölatif yoğunlukları belirlenmiş, SEM ve mikro yapılı analizleri yapılmıştır. Üretilen köpüklerin rölatif yoğunlukları belirlenmiş, SEM ve mikro yapılı analizleri yapılmıştır. Yapılan çalışmalar sonucunda SiCₚ takviyenin köpük malzemede hücre stabilizasyonu sağladığı görülmüştür. Köpük oluşumunda, köpürtme süresi, takviye boyutu ve oranı, sıcaklık ve köpürtücü madde özelliklerinin köpük oluşumunu etkileyen başlıca parametreler olduğu tespit edilmiştir.

Anahtar Kelimeler: AlMg3, Alüminyum, kompozit, köpük, üretim, karakterizasyon, yarı-katı.
ABSTRACT

In this study EN AW 5754 Aluminium alloy is foamed in semi-solid state with different time intervals by adding different %wt. of blowing agent (TiH₂). Different %wt. of SiC was reinforced and the effect of SiC to foam stabilization was investigated. Relative densities were determined by density measurements of the specimens, SEM and micro-structure images were taken. The result of this study showed that, SiCₚ reinforcement stabilize the cell structure of the foam material. Foaming time, reinforcement size and percentage, temperature and the properties of the blowing agent were determined as the basic parameters of the foam formation.

Key Words: AlMg3, Aluminium, composite, foam, production, characterization, semi-solid.
ÖNSÖZ

TEŞEKKÜR

Bu çalışmada emeği geçen değerli hocalarımız Nilhan Ürkmez TAŞKIN, Vedat TAŞKIN ve Metin AYDOĞDU’ya, yardımlarından dolayı proje arkadaşlarımız Pınar Aydan Demirhan, İsmail Mutlu ve Anıl Şahin’e, destek ve hoşgörülerinden dolayı eşim Tuba’ya, oğlum Mesut Deniz’e, annem ve babama çok teşekkür ederim.

Bu tez TÜBİTAK Bilimsel ve Teknolojik Araştırma Projelerini Destekleme Programı tarafından 108M325 numaralı proje kapsamında desteklenmiştir.
1. **GİRİŞ**

1.1. Metal Köpüklerin Tarihçesi

1.2. Metal Köpüklerin Sınıflandırılması

Literatürde ve pratik kullanımında, metalik köpük teriminin, yoğun-olmayan herhangi bir metalik malzeme için kullanılması gibi bir karmaşıka mevcuttur. Metalik köpüğü doğru tanımlamak için;

1.2.1. Hücresel (selüler) metaller, destek ve tabakaların ara bağlı ağı ile oluşan yüksek hacim fraksiyonlu boşluklara sahip malzemelerdir.

1.2.2. Gözenekli (poroz) metaller, izole edilmiş kabaca küresel gözeneklere sahiptir ve porozite seviyesi genellikle 70’den düşüktür. Mekanik olarak, gözenekler porozitenin 20 %’den düşük olduğu durumlarda birbirleriyle etkileşmezler.

1.2.3. Metal köpükler, hücresel metallerin bir alt grubudur, genellikle çok yüzlü hücreleri vardir, şekilleri duruma göre değişebilir, örneğin yönlü katılaştırma değişik morfolojiler yaratabilir. Hücreleri ayıran ya da bitişiren hücre zarlarıyla kapalı hücre, ya da hücre zarı olmaksızın hücrelerin ara bağlı olmasıyla açık hücre olabilirler. Metal köpük ifadesi, sadece sıvı faz için kesinlikle geçerlidir, sık sık katı ürünü tanımlamak için de kullanılır. Böylece; sıvı Mukabili sıvı-metal köpük olarak tanımlanır.

1.3. Metal Köpüklerin Kullanım Alanları

Metal köpükler, termal, mekanik, biomedikal, yakıt pili, elektriksel ve sönmüleme gibi uygulamalarda, endüstriyel ve bilimsel olarak geniş bir yelpazede kullanılabilir.

Metal köpükler genişleyen bir yelpazede uygulama alanı bulunmaktadır. Uygun metal köpüğün bir probleme çözüm olması bir takım şartlara bağlıdır.

A) Morfoloji: İsteklenen porozite tipi (açık kapalı), istenen porozite miktarı, istenen porozitenin boyut skalası, metal köpüğün toplam iç yüzey alanı.

B) Metalüriji: istenen metal, alım ya da mikro yapısallık hal.

C) Proses: köpüğün şekillendirilebilirliği ya da köpük ve geleneksel levha ya da profillerle kompozit üretilebilirliği.

D) Ekonomi: Maliyet masrafları, geniş hacimde üretimine uygunluğu (Banhart, 2001).

1.3.1. Metal köpüklerin çeşitli endüstriyel sektörlerdeki yapısal uygulamaları

Otomotiv endüstrisi

Şekil 1.1. Metal Köpüklerin Temel Otomotiv Sektöründeki Kullanım Alanları

Hafif yapı

Çarpışma enerji sağlanması

Ses kontrolü

![Şekil 1.4. Yerleşim alanlarına yakın otoyollar için ses izolasyonu. ALPORAS-Shinko Wire Company Ltd.](image)
Şekil 1.5. a) Otoyol köprüsünün altında ses soğurucu astar b) Yarı küre şeklinde ses soğurucu elemanlar

Uzay teknolojisi

Şekil 1.6. Uzay mekiği atmosferik kontrol sistemi için ısı değiştirici birimi DUOCEL alüminyum köpük – ERG

Şekil 1.7. Hafif kompozit ayna yapımında kullanılan DUOCEL köpüğü – ERG

Şekil 1.8. Optik teleskop için güneşlik DUOCEL alüminyum köpük - ERG

Gemi yapımı

Hafif yaprı gemi yapımında da önem kazanmıştır. Modern yolcu gemileri tamamıyla alüminyum ekstrüzyonlardan, alüminyum levhalardan alüminyum

Demiryolu endüstrisi

Bina endüstrisi

Makina yapımı

Makine üretiminde metal köpüklerin bazı ilginç uygulamaları vardır. Ataleti azaltılmış ve sönmüleme özelliği arttırılmış köpük dolgu kolon parçaları dingil gibi geleneksel metalarden yapılan bazı parçaların yerini alabilir. Bu tarz parçalar matkap freze ve boya makinelerinde kullanılabılır. Köpük metal gövdeler elektrikli aletlerde elektromanyetik kalkan olarak kullanılabilir. Öğütme makinelerinde zararlı titreşimi...
sönümlemek için kullanılabilir. Alüminyum köpükler ayrıca teleskop aynalarına destek olarak kullanılabilir (Banhart, 2001).

Spor ekipmanı

Bu sektördeki yüksek fiyatlardan dolayı yeni materyal uygulamalarına çok müsaittir. Örneğin alüminyum köpüğün iyi enerji sağlama kapabilitetinden dolayı, futbolcular için incik kemiği koruyucu yapılabilir (Banhart, 2001).

Biomedikal endüstrisi

Titanyum ya da kobalt-kromuym alaşımları, biouyumlu olduklarını için protez ve dış protezlerinde kullanılır. Metal köpük kullanılarak yoğun dağılımı istenen şekilde biçimlendirilebilir (Banhart, 2001).

1.3.2. Fonksiyonel uygulamalar için hücresel metaller

Filtreleme ve ayrıştırma

İki çeşit filtre vardır: katı partiküller ya da bir sıvı içinde dağılmış olan lifleri tutan ve ayrıtırılan filtreler ya da bir gaz içinde dağılım katı ya da sıvı partiküleri tutan filtreler. İlk çeşide örnek geri dönüştürülmüş polimer eriyiklerini temizleme işlemi için, biradan mayaya çıkartmak için, kirlenmiş yağ için olan filtrelerdir. İkinci tip mazot dumanlarının filtrelenmesini ve hava yollarındaki suyun giderilmesini kapsar. Önemli filtreleme özellikleri, hassas filtreleme kapasitesi, iyi partikül tutuşu, temizlenebilirlik, mekanik özellikler, korozyon direnci ve maliyettir (Banhart, 2001).

İş değiştirgeçleri ve soğutma makineleri

Alüminyum ve bakır bazlı oldukça iletken köpükler ısı değiştirgeçleri olarak kullanılabilirler. Bu durumda açık hücre köpükler gerekmektedir. Sıvı ve gazların köpük boyunca akmasını sağlayanlarıyla beraber, köpük ısıtılırak veya soğutularak gaz

Katalizör yatakları

Sıvıların depolanması ve transferi

Akışkanların akış kontrolü

Gözenekli malzemeler sıvı ve gazların akış kontrolü için kullanılabilir. Metal köpükler rüzgâr tünelerinde akış düzleyiciler ve valflarda akış dağıtıcılar olarak kullanılmaktadır (Banhart, 2001).
Susturucular

Püskürtücüler

Pil elektrotları

Kurşun köpükler, kurşun asit pillerdeki aktif malzeme için yatak olarak kullanabilirler ve geleneksel kuşun kafelerin yerini alabilirler, böylece çok hafif elektrotlar üretilabilir (Banhart, 2001).

Şekil 1.9. NiCd ve NiMeH bataryalarında kullanılan pozitif elektrot nikel köpük.
Alev tutucular

Hücre duvarı malzemesi yüksek iletkenliğe sahip hücresel metaller, yanıcı gazların alev yayılımasını durdurmak için kullanılabilir. Bazı açık hücre köpük çeşitleri 550 m/s hızla ilerleyen alevleri yakalama yeteneğine sahiptir (Banhart, 2001).

Elektro kimyasal uygulamalar

Su arıtma

Hücresel metalik malzemeler suyun içinde dağılan istenmeyen iyonların konsantrasyonunu azaltmak için kullanılabilir. Bu uygulamada, kirli su oldukça gözenekli yapıdaki hücresel metal boyunca akar. İyonlar hücresel yapının metal matrisiyle temas ederek redoks reaksiyonuna girerler (Banhart, 2001).

Akustik kontrol

1.3.3. Dekorasyon ve sanat için hücresel malzemeler

2. METAL KÖPÜK ÜRETİM YÖNTEMLERİ

Metal köpük yapımı için 9 farklı proses rotası geliştirilmiş, 5 tanesi ticari olarak uygulanmaktadır. Bunlar 4 genel sınıfa aitır:

a- köpük, buhar fazından yapılır.
b- köpük, sulu bir çözeltiden elektro depozite edilir.
c- sıvı hal prosesine dayanır.
d- köpük, katı halde üretilir.

Her metot metallerin küçük bir alt kümesinde, sınırlı yelpazedeki rölatif yoğunluk ve hücre boyutlarında üretim için kullanılabilir. Açık ve kapalı hücreli köpükler üretilebilir. Ürünler kalite ve fiyat olarak çok farklılık gösterebilir. (Kilogram $7-$12000)

Metal köpüğün özellikleri, yapılığı metalin özelliklerine, rölatif yoğunluk ve hücre topolojisine (açık kapalı hücre, hücre boyutu) dayanır. Metal köpükler aşağıda listelenen 9 proste biriyle yapılır.
2.1. Metal Gaz Enjeksiyonu

1m genişliğinde 0.2 m kalınılıında 5-20 mm çaplarında kapalı hücre gözenekli levhalar, çeşitli tekniklerle üretilibilir. Norsk-Hydro ve Cyombat/Alcan köpükleri bu metotla yapılır. En düşük maliyetli yöntemdir ve 0.03 ten 0.1’e kadar rölatif yoğunlukta köpükler üretilabilir.

Şekil 2.1. Gaz Enjeksiyon Metodu İle Üretilen Alüminyum Köpüğün Şematik Gösterimi (CYMAT ve HYDRO Prosesleri)
Cymbat/Alcan ve Norsk hydro prosesleri sürekli gaz enjeksiyon metodudur. 1980 sonları ve 1990'larda Alcan ve Norsk Hydro tarafından eşzamanlı fakat birbirinden bağımsız olarak geliştirilmiştir.

Bu döküm teknolojisiyle ayrıca dikdörtgen olmayan 2 boyutlu profiller ve 3 boyutlu şekiller üretemek mümkündür (Ashby v.d., 2000).

Şekil 2.3. Alcan prosesi ile Üretilmiş Paneller.
2.2. Gaz Brakan Partiküllerin Eriyiğin İçinde Çözülmesi

Alüminyum eriyiğine TiH$_2$ partikülleri eklenecek, geniş hacimde hidrojen gazı hızlı bir şekilde üretilir, kapalı hücre köpük oluşturacak kabarcıklar oluşturur, sağlanan köpük drenaji yeterince düşür, yüksek bir erime viskozitesi gerektirir. Bu yöntemle Shinko Wire Company, Alporas adı altında bir alüminyum köpük üretmiştir.

Bu proses alüminyumu ergitererek ve ergime sıcaklığı 670 ve 690 °C arasında stabilize edilerek başlar. 1-2% kalsiyum eklenecek viskozitesi artırılır, hızlı oksitlenerek CaO ve CaAl$_2$O$_4$ partikülleri oluşur.

Şekil 2.4. Eriyik İçinde Gaz Brakan Partikül Çözünmesi İle Üretilen Alüminyum Köpüğün Proses Adımları (Alporas Prosesi)

Şekil 2.5. İki İnce Alüminyum EN AW 5754 [AlMg3] Tabakasından ve ALPORAS Alüminyum Köpük Dolgusundan Yapılmış Bir Sandviç [2].
Eriyik sürekli olarak karışırlarak 1-2% ve 5-20µm çapında TiH\textsubscript{2} partikülleri eklenir. Partiküller eriyik içinde yayılıklarında karışıma durdurulur ve eriyiğin üzerinde köpük oluşumuna müsaade edilir. Proses kontrolü yüksek basıncı, sıcaklığı ve zamanı ayarlayarak sağlanır. TiH\textsubscript{2}’yi ayırırken genelde 10 dakika civarı sürer.

Pahalı kalsiyum ve TiH\textsubscript{2} kullanılmasından dolayı gaz enjeksiyon metodundan daha pahalıdır.

TiH\textsubscript{2} yüksek ergime noktalarında çok hızlı ayrılaşmazda çok hızlı ayrılaşan TiH\textsubscript{2} 465 °C'de çözünmeye başlar ve bu sıcaklık saf alüminyumun (660 °C) ve alasımın ergime sıcaklığının düşüktür. Böylece köpük yapıcının toz metalürgi proseslerini kullanarak katı alüminyum içinde yayılması ve sıcaklığın yeterli bir şekilde arttırlarak, eriyiğin bir bölümünde ya da tamamında gaz çözündürülecek, kabarcık büyümesi sağlanabilir.

Özellikle Bremen’deki IFAM, Avusturya Randshofen’deki LKR ve Avusturya Marktl’deki Neuman-Alu bu yaklaşımları geliştirmiştir.

2.3. Yarı Katı İçinde Gaz Bırakan Partikül Çözülmesi

Köpük yapıçlar metale katı halde karışırlararak ve toz takviye edilerek katılaşabilir. Yaygıın olarak kullanılan TiH\textsubscript{2} 465 °C’de çözünmeye başlar ve bu sıcaklık saf alüminyumun (660 °C) ve alasımın ergime sıcaklığının düşüktür. Böylece köpük yapıcının toz metalürgi proseslerini kullanarak katı alüminyum içinde yayılması ve sıcaklığın yeterli bir şekilde arttırlarak, eriyiğin bir bölümünde ya da tamamında gaz çözündürülecek, kabarcık büyümesi sağlanabilir.

Özellikle Bremen’deki IFAM, Avusturya Randshofen’deki LKR ve Avusturya Marktl’deki Neuman-Alu bu yaklaşımları geliştirmiştir.

Köpük yapıç partiküller, toz alüminyum alaşım ile birleştirilir. Bileşenler tam olarak kariştirılduktan sonra, tozun soğuk ekstrüzyonu yoluya cubuk ya da levhalar oluşturulur, prekursör materyali elde edilir.
Prekursor küçük parçalara dilimlenerek kapalı kalba konur ve alaşılmının katılık sıcaklığının biraz üzerindeki bir sıcaklığa kadar ısıtılır. TiH₂ ayrışarak yüksek iç basınçlı boşluklar oluşturur. Bunlar yarıkatı aksi genișler, alüminyum kabarır ve kalıbı dolduran köpüğü oluşturur. Proses 0.08 gibi düşük rölatif yoğunluklu ve kalın şeklindeki köpük oluşumuyla sonuçlanır. Köpük kapalı hücrelidir, çaplar 1-5 mm arasında değişir.

a) Malzeme Seçimi

b) Sağlıklaştırma & Haddeleme

c) Şekillendirilmiş kalp

Şekil 2.8. Yarı-Kati Halde Gaz Brakan Partiküller Vasıtasıyla Üretilen Metal Köpüklerin Toz Metalurjisi Adımları (Fraunhofer ve Alulight Prosesleri)

Şekil 2.7. Alüminyum kaplanmış alüminyum köpük

2.4. Polimer Ya da Balmumu Prekursörünü Mastar Olarak Kullanarak Yapılan Döküm

Birçok malzemeneden, çok iyi üniformluk derecesinde ve geniş hücre boyut aralıklarında, düşük rölatif yoğunluğa sahip açık hücre polimer köpükler üretilebilir. Bunlar yatırım amaçlı döküm kalıpları için mastar olarak kullanılabilir ve birçok metal ve alaşmalar ile döküm yapılabilir. ERG DUACEL köpüklerin bu yolla yapıldıkları düşünülmektedir.

Şekil 2.9. Açık Hücre Köpükler Üretmek İçin Kullanılan Hassas Döküm Metodu (DUOCEL Prosesi)

Sıvı metal yerine toz metal bulamaçları da kullanılabilir. Bunlar sonradan sinterlenir. 0.05 gibi düşük rölatif yoğunluğa ve gözenek boyutları 1-5mm aralığında açık hücre köpükler üretilebilir.

Metal, geleneksel döküm teknikleri kullanılarak ve basınçlı döküm yöntemleriyle kalıplanır (Ashby v.d., 2000).

2.5. Hücresel Preformlar Üzerine Metal Kaplanması

Açık hücre polimer köpükler, üzerine metal çöktürülmesi ile mastar olarak kullanılabilir. INCO Prosesinde nikel, nikel karbonilin Ni(CO₄) ayrıştırılarak bırakılır.

Gaz 100°C civarında nikel ve karbon monoksite ayrışarak, reaktörün içindeki bütün ısıtılmış yüzeyi kaplar. Sadece polimer köpüğü ısıtman için kızıl ötesi ya da RF ısıtma kullanılarak.

Onlarca mikrometre metal çöktürüldükten sonra metal kaplanmış polimer köpük CVD reaktöründen çıkarılarak havada ısıtılarak yakılır. Bu ontvangil hücresel metal yapıştı sonuçlanır.

Kirişleri yoğunlaştırırmak için sonradan sinterleme adımı kullanılır. Nikel karbonil oldukça toksiktir ve nikel köpükler üretilmeden önce oldukça yüksek maliyetli çevresel kontroller gerektirir. Birleşmiş milletler ve bazı diğer ülkeler kullanımını yasaklamış ve bazı ülkeler de nikel karbonil gaziyla yapılan endüstriyel prosesleri oldukça pahalı bir hale getirmişlerdir.

Gözenek boyutları oldukça geniş bir yelpazede değişir. 100-300µm çapında açık hücre köpükler elde edilebilir.
Bu metot nikel ya da titanyum gibi saf elementlerle sınırlandırılmıştır, çünkü alaşımların kimyasal buhar çıkarması (CVD) ya da elektro çıkarması zordur.

Günümüzün en düşük rölatif yoğunluklu (0.02-0.05) köpükleri bu metotla elde edilebilir (Ashby v.d., 2000).

2.6. Hapsedilmiş Gaz Genişlemesi

Argon gibi inert gazların metaller içinde çözünebilirlikleri oldukça düşüktür. Yüksek basınçta inert gaz ihtiva eden küçük gözenekli yapıya sahip malzemeler üretmek için toz metalürjisi teknikleri geliştirilmiştir.

Bu malzemeler sonradan ısıtıldıklarında gözenek basınıcı artar ve çevreleyen metalin sürünmesiyle gözenekler genişler.

Bu proses Boeing tarafından %50 gözenekli yapıya sahip, düşük yoğunluklu gözenekli Ti-6Al-4V sandviç paneller üretmek için kullanılmıştır (Ashby v.d., 2000).
Şekil 2.10. CVD Prosesi ile Üretilen Açık Hücre Nikel Köpüklerin Şematik Gösterimi (INCO Prosesi)
2.7. Boş Küre Yapılar

Bu metotla gözenekli nikel alaşımları ve 0.06 rölatif yoğunluklu Ti-6Al-4V üretilebilir.

Gözenek kontrollü toz püskürme tekniklerinin geliştirilmesi, bu metotla düşük yoğunluklu alaşımların ekonomik olarak fabrikasyonlarını sağlayabilir.

Alternatif bir metotta, TiH₂ gibi ayrışabilen prekursorlerin bulamacidadan, organik bağlayıcı ve çözücülerle birlikte, boşüreler elde edilebilir.
Şekil 2.13. Toz / Kutu Hazırlanması

Bu prosedürde toz aynı alaşımından yapılmış bir teneke kutuya konur. Tenekenin içindeki tüm oksijen tahliye edilir ve 3-5 atmosfer (0.3-0.5MPa) basıncında argonla doldurulur.

Şekil 2.14. Sıcak İzostatik Pres (HIP) Sertleştirilmesi

Teneke kapatılır ve Sıcak İzostatik Preslenerek (0.9-0.98) rölatif yoğunluğa ulaştırılır, gözenek basıncında artışı neden olur. Bu Ti-6Al-4V’nin oda sıcaklığında genişlemesi için çok düşüktür. Takviye edilmiş numunedeği gözenek sayısı nispeten düşüktür.
Yapıyı rafine etmek ve küçük gözeneklerin daha düzgün dağılmışını sağlamak için haddeleme adımı eklenmiştir. Titanyum alaşımlarında 900-940°C de haddeleme, boşlukların haddeleme yönünde düzleşme ve uzamasıyla sonuçlanır.

Bu proces, 0.5 boşluk oranı ve 100-300µm boyutunda gözenekli, titanyum alaşım sandviç yapısı oluşumuyla sonuçlanır. İnert gaz maliyeti düşüktür. Titanyumun Sıcak İzostatik Preslenmesi ve sıcak haddelenmesi pahalı olabilir (Ashby v.d., 2000).
Şekil 2.17. Açık Hücre Nikel Köpükleri Üretmek İçin CVD Prosesini Şematik Gösterimi (INCO Prosesi)

Georgia Tech’de geliştirilen bu yaklaşım birçok materyale uygulanabilir ve hidrüllerle sınırlı değildir.

Örneğin $F_2O_3+Cr_2O_3$ indirgenerek paslanmaz çelik üretilebilir.

IFAM Bremen’de geliştirilen başka bir yöntem polistiren kareler metal bulamacıyla kaplanarak ve sintelenerek, yüksek düzgünlikte boş metal kareler elde edilebilir.
0.05 gibi düşük rölatif yoğunluklar mümkündür. Gözenek boyutu 100µm den milimetrelerce kadar olabilir (Ashby v.d., 2000).

2.8. Bir Tanesi Eriyebilen İki Malzemenin Yeniden Sıkılaştırarak Dökülmesi

İki toz, ikisi de hacimsel olarak %25’in altında olmamak suretiyle karıştırılır ve sıkıştırılır. Takviyeden sonra bir toz (örneğin tuz) uygun bir çözüçüdefiltrelenir.

Şekil 2.18. a) Sıvı Bir Metal (Alüminyum Ya da Bir alüminyum Alaşımı) Tarafından Nüfuz Edilen Eriyebilir Partiküllerin (Tuz gibi)Yatağı b) Partiküller Uygun Bir Çözücüde (Su gibi) Çözünerek Açık Hücre Köpük Oluşturlurlar

Alüminyum aşaşlarının toz karışımı bazı köpükler, sodyum klorür ile geniş kesitlerde ve düzgün bir yapıda yapılabilir.

Pratikte bu metotla 0.3-0.5 rölatif yoğunlukta malzemeler üretilabilir. Hücre boyutunu, toz partikül boyutu belirler ve 10µm ile 10mm arasında değişir.

2.9. Gaz-Metal Ötektik Katlaştırma

Birçok metal alassımı, ikili hidrojen faz diyagramlarında ötektik olduğunu ortaya koyar. Bunlar; Al-, Be-, Ce-, Cu-, Fe-, Mg-, Mn-, ve Ni-alasimlarını kapsar.

Bu alassımlar ergitilir ve basınç altında hidrojenle doyurulur, yönlendirilmiş katlaştırma ştirman sonra basınç düşürülür. Katlaştırma sırasında, katı metal ve hidrojen ötektik gaz reaksiyonu ile eşzamanlı olarak olustur; hidrojen dolgu gözenekleri olan gözenekli bir yapılı oluşturur.

a) Metal-hidrojen ikili faz diyagramı
Şekil 2.19. GASAR’ların Üretilmesi İçin Gaz Metal Ötektik Katlaşması

Şekil 2.20. GASAR’ın gözenek yapısı
Tablo 2.1. Ticari Metalik Köpük Malzemelerin Bazı Özellikleri.

<table>
<thead>
<tr>
<th>Özellikler</th>
<th>Cymat</th>
<th>Alulight</th>
<th>Alporas</th>
<th>ERG</th>
<th>Inco</th>
</tr>
</thead>
<tbody>
<tr>
<td>Malzeme</td>
<td>Al - SiC</td>
<td>Al</td>
<td>Al</td>
<td>Al</td>
<td>Ni</td>
</tr>
<tr>
<td>İzafiyet yoğunluk, (\rho/\rho_0)</td>
<td>0.02 - 0.2</td>
<td>0.1 - 0.35</td>
<td>0.08 - 0.1</td>
<td>0.05 - 0.1</td>
<td>0.03 - 0.04</td>
</tr>
<tr>
<td>Yapı</td>
<td>Kapalı Hücre</td>
<td>Kapalı Hücre</td>
<td>Kapalı Hücre</td>
<td>Açık Hücre</td>
<td>Açık Hücre</td>
</tr>
<tr>
<td>Young Modülü (E[MPa])</td>
<td>0.02 - 2.0</td>
<td>1.7 - 12</td>
<td>0.4 - 1.0</td>
<td>0.06 - 0.3</td>
<td>0.4 - 1</td>
</tr>
<tr>
<td>Poisson Oranı, (\nu)</td>
<td>0.31 - 0.34</td>
<td>0.31 - 0.35</td>
<td>0.31 - 0.36</td>
<td>0.31 - 0.37</td>
<td>0.31 - 0.38</td>
</tr>
<tr>
<td>Basma Mukavemeti (\sigma_c[MPa])</td>
<td>0.04 - 7.0</td>
<td>1.9 - 14.0</td>
<td>1.3 - 1.7</td>
<td>0.9 - 3.0</td>
<td>0.6 - 11</td>
</tr>
<tr>
<td>Çekme Mukavemeti (\sigma_T[MPa])</td>
<td>0.05 - 8.5</td>
<td>2.2 - 30</td>
<td>1.6 - 1.9</td>
<td>1.9 - 3.5</td>
<td>1.0 - 2.4</td>
</tr>
<tr>
<td>Kırılma Tokluğu (K_{IC}[MPa.m^{1/2}])</td>
<td>0.03 - 0.5</td>
<td>0.3 - 1.6</td>
<td>0.1 - 0.9</td>
<td>0.1 - 0.2</td>
<td>0.6 - 1.0</td>
</tr>
<tr>
<td>Isı İletkenliği (q[W/m.K])</td>
<td>0.3 - 10</td>
<td>3.0 - 35</td>
<td>3.5 - 4.5</td>
<td>6.0 - 11</td>
<td>0.2 - 0.3</td>
</tr>
</tbody>
</table>

Şekil 2.21.Farklı Üretim Yöntemleriyle Üretilen Hücresel Metallerin Topoloji Örnekleri (Haydn, 2002)
3. HÜCRESEL METALLERIN KARAKTERİZASYON YÖNTEMLERİ

3.1. Tahribatsız Muayene

3.1.1. Yoğunluk ölçümüleri

Gözenekli bir malzemenin yoğunluğu malzemeyi tartarak ve belirli bir yoğunluğa sahip sıvı içerisindeki yüzebilirliği Arşimet prensibi ile ölçülerek belirlenebilir. Eğer karakterize edilecek numunenin dış yüzeyi kapalı değil ise, sıvı nüfuz etmesini engellemek için dış yüzey, polimer film tabaka ile kaplanmalıdır (Banhart, 2001).

3.1.2. Boya nüfuz ettirme ölçümleri

3.1.3. X-İşımı radyoskopi ve radyografisi

Hücresel metaller basit X-ışımı soğurma teknikleri ile incelenebilir. 4-10mm kalınlıktaki köpüklerin gelişimi gerçek zamanlı olarak senkrotron radyoskopisi ile incelenebilir (Banhart, 2001).
3.1.4. X-İşimi ölçümlü tomografi

3.1.5. Girdap akım algılama

Köpükler; çoklu frekans elektriksel empedans ölçümleri yapılırak, rölatif yoğunluk ve hücre boyutlarıyla karakterize edilir. Girdap akımları sadece bazı geometrik faktörlere ve frekansa bağlı değildir, köpük özelliklerine de bağlıdır. Gözenekliliğin çıkış sinyalinde belirgin bir etkisi olduğu gösterilebilir. Bu metot, uygun kalibrasyondan sonra numunenin lokal yoğunluk ve diğer gözenek özelliklerinin ölçümü için kullanılabilir (Banhart, 2001).

3.1.6. Akustik ölçümler

Gözenekli ortamların ses emme özellikleri genellikle çubuk ve kesin ölçüm sağlayan bir empedans tüpünde yapılır (Banhart, 2001).

3.1.7. Titreşimsel analiz

Malzemelerin Young modülü ve kayıp faktörü titreşimsel analizle belirlenebilir. En basit teknik, uzun dikdörtgensel dairesel kesitli ya da ince dörtgensel tabaka olarak üretilen malzemenin titreşime zorlanmasıdır (Banhart, 2001).

3.1.8. Gözeneklilik ve geçirgenlik

Açık hücre metalik malzemelerin iç yapılarıyla ilgili, spesifik yüzey alanı, hücre boyut dağılımı ve kanal boyut dağılımı gibi parametrelerin hesaplanması önemlidir.
Bunun için çevra gözenekliliği, gaz emme tekniği, geçirenlik gibi bir takım teknikler kullanılmaktadır (Banhart, 2001).

3.1.9. Elektriksel ve ısıl iletim ölçümleri

Alüminyum Köpükler için ortalama 2mm çapında gözenekler, 200 mm² kesitli ve 200 mm uzunlukta dikdörtgensel numuneler kullanılır. Ölçümler köpüğe kenetlenmiş bakır plaklarla yapılır (Banhart, 2001).

3.1.10. Diğer metotlar

X-ışını ve nötron küçük açı yayma, dalga yayma spektrometresi, ultra ses sureti gibi yöntemlerle hücresel metaller karakterize edilebilir (Banhart, 2001).

3.2. Tahribatlı Muayene

3.2.1. Optik suret analizi

Hücresel metallerin hücre morfolojisi ve mikro yapıları çeşitli büyütmelerle optik gözlemle analiz edilebilir. Gerçek analiz tahribatsız olmaksızın birlikte numune hazırlanması için genellikle kesme, gömme parlatma gibi işlemler gerektiği için pratikte tahribatlı muayene yöntemidir (Banhart, 2001).

3.2.2. Mekanik testler

Hücresel metallerin herhangi bir yapısal uygulaması için mekanik testlerin yapılması ilk koşuldur. Çeşitli mekanik testler şu şekilde sınıflandırılabilir:

Uygulana gerilim çesidi: Tek eksenli, çift eksenli, çok eksenli, hidrostatik.

Yükleme modu: Sıkıştırma, gerilme, kesme, eğilme, burulma

Yükün zamana bağlılığı: Sabit, yavaşça artan, dinamik, dairesel
3.2.3. Korozyon testi

4. LİTERATÜR ARAŞTIRMASI

Feng’in 2003 yılındaki çalışmasında, toz metalürji tekникleri uygulanarak kapalı hücresel alüminyum köpükler üretilmiştir. Metal tozları ve köpürtme ajani (TiH2 tozu) karıştırılmıştır. Köpüğün özellikleri etkileyen, hücresel çap, sınır kalınlığı, sınır uzunluğu gibi geometrik parametreler incelenmiş ve hücresel çapın, köpüğün elektrik iletkenliğinde ihmal edilebilir bir etkisi olduğu gözlemленmiştir.

Elbir ve arkadaki çalışmalarının 2003 yılında çalışmasına, hacimsel olarak 8.6% SiC partikül takviyeli, TiH₂ ihtiva eden alüminyum kompozit körpürme davranışını önceden ısıtılmış bir firında ergime icra edilmiş (750°C) üzerinde ısıtıklar araştırılmıştır. Karşılaştırmalar yapabilme için sığıştırılmış alüminyum tozları aynı şekilde hazırlanmış ve körpürtülmüştür. SiC partikül katılması için lineer genişlemeyi arttırdığı, sıvı metal drenaj miktarını azalttığı gözlemlemiştir. Kompozit körük numuneleri ayrıca daha yüksek sıkıştırma gerilimlerini göstermiş, fakat alüminyum körüklerine kıyaslara daha kırılgan bir davranış sergilemiştir.

Rabiee ve arkadaşlarının 2005 yılında çalışmasında, yeni bir kapalı hücre metal körük doğal döküm teknikleri kullanılarak geliştirilmiştir. Körük, rasgele yoğunluk oranınınla oluşurmuş boş çelik kulelerden oluşur, kuleler arasındaki boşluk alüminyum dökülmesiyle doldurulur. Malzemenin ölçülen yoğunluğu 2,4 g/cm³'tür, rölatif yoğunluk 41,5%’tir. Bu çalışmadada geliştirilen kompozit körük, üstün basma dayanımı ve enerji soğutma kapasitesine sahiptir. Yeni malzeme uzay, otomotiv ve biyomedikal endüstrilerinde geçecek vaat eden uygulama alanlarına sahiptir.

Matijasevic’ın 2006 yılındaki çalışmasında, sıcaklık uyumsuzluğunu minimize etmek için; alaşım tekrar alışmalanlarak ergime sıcaklığı düşürülebilir ya da körük yapının ayırmasına eşi termal ön işlemlerde yükseltilebilir. Eğer TiH₂ havada önceden ısıtılsa, partiküllerin yüzeyinde bir oksit tabakası oluşur. Bu tabaka partiküllerden gaz salınmasını engelleyerek, böylede ideal bir şekilde alaşımını ergime sıcaklığına

Esmaeelzadeh ve arkadaşlarının 2007 yılındaaki çalışmasıında, AlSi7-3 vol.%SiC metal köpüğü, köprüme davranışı ve basma özellikleri deneysel olarak incelenmiştir. Saf Al, Si, SiC ve TiH₂ tozları karıştırılmış, sıcak ısıtılmış ve 750, 780, 810°C’de köprüülmüştür. Görülmüştür ki, ince SiC partiküllerin eklenmesi (ortalama 3µm çapında) ergiyik genişlemesini arttırılmış ve AlSi7 köpüğünün stabilitesini artırılmıştır. Hücre yapısında daha az drenaj olduğu gözlemlenmiştir. Ayni esnada, basma yükü altında, makro yapida geniş düzensiz hücreler ve mekanik özelliklerde az bir miktar bozulma gözlemlenmiştir.

Mekanik testler gösterdi ki; kompozit çelik köpüklerimiz, literatürde bildirilen diğer köpüklere göre daha iyi enerji emme kapasitesi ve yoğunlukça göre dayanım oranı sergilemiştir. İleriki çalışmalarında bu köpüklerin periyodik yükler altında mekanik özellikleri ve hasar modellemesi üzerinde çalışılacaktır.

5. DENEYSEL ÇALIŞMALAR

Deneysel çalışmaları iki aşamada gerçekleştirilmiştir. Çalışmanın ilk aşamasında AlMg3 alaşımı değişik oranlarda SiC parçacıklarıyla takviye edilerek, kompozit köpük üretimi, ikinci aşamada üretim parametrelerinin üretilen kompozit köpük malzemeler üzerindeki etkileri incelenmiştir.

5.1. Kompozit Köpük Üretimi

5.1.1. Malzeme seçimi

AA5754 alüminyum alaşımı ısıl işleme sertleştirilebileceği özelliği olmayan, dayanımı yüksek bir alaşım olup, özellikle deniz suyuna karşı mükemmel korozyon dayanımı, çok iyi kaynak edilebilirliği ve iyi şekilde verilebilme özelliği olan bir alaşımdır. (Spencer vd. 2002). Bu sebeple AA5754 alaşımı matris malzemesi olarak seçilmiştir. AA5754 alaşımının fiziksel özellikleri Çizelge 5.1’de, kimyasal bileşimi Çizelge 5.2’de verilmektedir.

<table>
<thead>
<tr>
<th>Ağırlık %</th>
<th>Si</th>
<th>Fe</th>
<th>Cu</th>
<th>Mg</th>
<th>Mn</th>
<th>Cr</th>
<th>Zn</th>
<th>Ti</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2,6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Max.</td>
<td>0,4</td>
<td>0,4</td>
<td>0,1</td>
<td>3,6</td>
<td>0,5</td>
<td>0,3</td>
<td>0,2</td>
<td>0,15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>İşlem</th>
<th>Çekme Dayanımı, R m MPa</th>
<th>Akma Dayanımı, R p0,2 MPa</th>
<th>Uzama Dayanımı %</th>
<th>Kesme Modülü MPa</th>
<th>Elastisite GPa</th>
</tr>
</thead>
<tbody>
<tr>
<td>O, H111</td>
<td>215</td>
<td>-</td>
<td>25</td>
<td>140</td>
<td>68</td>
</tr>
</tbody>
</table>
Metal köpük üretiminde köpürtücü madde olarak TiH₂ seçilmiştir farklı boyutlarda satın alınarak ısıl işlemli ve ısıl işlemesiz olarak kullanımlarının, köpük malzeme hücre yapısına etkileri incelenmiştir. Köpürtücü olarak kullanılacak TiH₂ tozlarının fiziksel özellikleri ve kimyasal kompozisyonları tablo 5.3.’de verilmiştir.

Tablo.5.3. Köpürtücü olarak kullanılacak TiH₂ tozlarının fiziksel özellikleri ve kimyasal kompozisyonları

<table>
<thead>
<tr>
<th></th>
<th>TiH₂</th>
<th>TiH₂</th>
<th>TiH₂</th>
<th>TiH₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>Görünüm</td>
<td>Grit Toz</td>
<td>Grit Toz</td>
<td>Grit Toz</td>
<td>Grit Toz</td>
</tr>
<tr>
<td>Parçacık Boyutu D₅₀</td>
<td>~3 μm</td>
<td>~20 μm</td>
<td>~100+/+200 Mesh</td>
<td><44 μm</td>
</tr>
<tr>
<td>Parçacık Boyutu D₃₂</td>
<td>~6 μm</td>
<td>~40 μm</td>
<td>~100+/+200 Mesh</td>
<td><44 μm</td>
</tr>
<tr>
<td>Moleküler Ağırlık (g/mol)</td>
<td>49,53-49,9</td>
<td>49,53-49,9</td>
<td>49,53-49,9</td>
<td>49,53-49,9</td>
</tr>
<tr>
<td>Yoğunluk</td>
<td>3,9 g/cm³</td>
<td>3,9 g/cm³</td>
<td>3,9 g/cm³</td>
<td>3,9 g/cm³</td>
</tr>
<tr>
<td>Gerçek Yoğunluk</td>
<td>3,8 g/cm³</td>
<td>3,8 g/cm³</td>
<td>3,8 g/cm³</td>
<td>3,8 g/cm³</td>
</tr>
<tr>
<td>Kimyasal Kompozisyon (wt%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Safflık</td>
<td>< 3,86</td>
<td>> 3,85</td>
<td>> 3,85</td>
<td>> 3,85</td>
</tr>
<tr>
<td>H</td>
<td>< 1</td>
<td>< 0,01</td>
<td>< 0,01</td>
<td>< 0,01</td>
</tr>
<tr>
<td>O</td>
<td>< 0,01</td>
<td>< 0,01</td>
<td>< 0,01</td>
<td>< 0,01</td>
</tr>
<tr>
<td>N</td>
<td>< 0,01</td>
<td>< 0,01</td>
<td>< 0,01</td>
<td>< 0,01</td>
</tr>
<tr>
<td>Cl</td>
<td>< 0,01</td>
<td>< 0,01</td>
<td>< 0,01</td>
<td>< 0,01</td>
</tr>
<tr>
<td>Si</td>
<td>< 0,01</td>
<td>< 0,01</td>
<td>< 0,01</td>
<td>< 0,01</td>
</tr>
<tr>
<td>Fe</td>
<td>< 0,01</td>
<td>< 0,01</td>
<td>< 0,01</td>
<td>< 0,01</td>
</tr>
<tr>
<td>Mg</td>
<td>< 0,01</td>
<td>< 0,01</td>
<td>< 0,01</td>
<td>< 0,01</td>
</tr>
<tr>
<td>Cr</td>
<td>< 0,01</td>
<td>< 0,01</td>
<td>< 0,01</td>
<td>< 0,01</td>
</tr>
<tr>
<td>Ni</td>
<td>< 0,01</td>
<td>< 0,01</td>
<td>< 0,01</td>
<td>< 0,01</td>
</tr>
<tr>
<td>Zr</td>
<td>< 0,01</td>
<td>< 0,01</td>
<td>< 0,01</td>
<td>< 0,01</td>
</tr>
</tbody>
</table>

5.1.1.1. TiH₂ tozlarının ısıl işlemi

Literatürde hidrojen difüzyonunun geciktirilmesi amacı ile TiH₂ tozlarına ısıl işlem uygulanması önerilmiştir ve en iyi işlem sıcaklığı olarak 480°C’de 3 saat bekletilmesi önerilmiştir (Behrendt v.d., 2006). Satın alınan farklı boyutlara sahip TiH₂ tozlarının belirlenen miktarlarına literatürde önerilen ısıl işlem uygulanmış ve ısıl işlemin oluşan hücre özellikleri etkisi incelenmiştir.
5.1.2 Deney Düzenesi

5.1.2.1. Kompozit köpük hazırlama ünitesi

Ergitme firmanın imalatı için mali raporda belirtilen malzemeler dışında gerekli olan profil, kaynak elektrotları, civata somun v.s malzemeler T.Ü. Mühendislik ve Mimarlık Fakültesi Atölyesinden temin edilmiştir. Şekil 5.1.’de imalat resmi verilen Max 1000 °C sıcaklıkta ısıtma kapasitesine sahip ergitme firının ve ek düzeneği imal edilerek firin karakteristik sıcaklık eğrisi çıkarılmıştır. Firin sıcaklığının zaman ile artış karakteristiği Şekil 5.2. ’de verilmiştir.

Şekil 5.1. Ergitme firin imalat resmi

Şekil 5.2. Ergitme firin sıcaklık-zaman karakteristik eğrisi
Metal Köpük üretim sürecinde yapılan denemelerde köpük iç yapısı görmek, köpük yapıyı ve hücre duvarlarını bozmadan test numunesi hazırlamak için alınan hassas kesme cihazı köpük duvar yapısına zarar vermeden çok iyi bir yüzey kalitesi ile işlem yapmaktadır. Ayrıca kompozit malzeme ve kompozit köpük kesme işlemleri de yapılabilen cihazın görüntülerini Şekil 5.3.’te verilmiştir.

Şekil 5.3. Numune kesme cihazı
5.1.2.2. Döküm Kalıpları

Köpük malzeme üretimi için kalıp malzemesi olarak Grafit, çelik ve gaz beton malzemeden kalıplar yapılmıştır. Bu malzemeler kullanılarak, köpürme işlemlerini gerçekleştirmiş ve malzemenin köpük yapısı üzerindeki etkileri incelenmiştir.

5.1.3. Yarı-katı Karşıtarma Yöntemiyle Metal Köpük Üretimi

5.1.3.1. Alüminyum alaşımlarının yarı-katı sıcaklık aralıklarının belirlenmesi

Alüminyum alaşımlarının yarı-katı sıcaklık aralıkları deneyler yapılarak tespit edilmiştir. Yarı katı sıcaklık aralıklarının tespiti ergitme firımı içinde yapılmış ve malzemenin hal değişimi izlenmiştir (Şekil 5.6.). Tespit edilen sıcaklık aralıklarının aşağıda verilen faz diyagramları ve literatürden elde edilen sıcaklık aralıkları ile uyumlu olduğu görülmüştür.

Şekil 5.4. 5754 alaşımının faz diyagramında yarı-katı işlem için minimum sıcaklık değeri [1]
Şekil 5.5. 5754 a至mının faz diyagramında yarı-katı işlem için maksimum sıcaklık değeri [1]

Şekil 5.6. Yarı katı sıcaklık aralıklarının tespiti için Al aşaşlarının ergilmesi

Köpük yapııı toızların reaksiyon hızlarının ve sıcaklıklarının belirlenebilmesi için 5754 Al aşaşını farklı boyutlardaki toızlarla köpürtülmuş ve köpürme süresi ve sıcaklıkları izlenmiştir.
5.1.3.2. Kompozit metal köpük üretimi ve üretim parametrelerinin incelenmesi

Kompozit metal köpük üretimi üç farklı aşamadan meydana gelmektedir. İlk aşamada köpük hazırlama ünitesi içinde bulunan potaya bir miktar AlMg3 konularak, az miktarda sıvı alınır elde edilmiştir. İkinci aşamada alüminyum aşımını belirli sürelerde potaya atılarak, malzeme yarı-katı sıcaklık aralığında tutulmuştur. Son aşamada, yarı-katı haldeki AlMg3 aşımı içine farklı sürelerde potaya atılarak, malzeme yar-katı sıcaklık aralığında tutulmuştur. Bu işlemler, farklı sıcaklıklar, TiH₂ türleri ve oranları, SiC oranları ve farklı bekletme süreleri için ayrı ayrı tatbik edilmiştir.

Ayrıca AlMg3 aşımı kullanılarak sırası ile aşağıdaki işlemler de yapılmıştır:

1- Köpürtme işleminde kullanılabilecek en uygun kalıp malzemesinin tespiti için ısı iletim katsayısı farklı üç malzeden köpürtme kalıpları imal edilmiş, yarı katı haldeki Al ve TiH₂ karışımla konulup sabit sıcaklıktaki farklı sürelerde firin içerisinde bekletilmiştir.

2- Gaz beton malzemenin yapılan kalıplara konan yarı katı Al-TiH₂ karışımlı farklı sıcaklıklarda işlem yapılarak köpük üretimi için en uygun sıcaklık aralıkları tespit edilmiştir.

3- Uygun kalıp malzemesi ve sıcaklık aralıkları tespit edildikten sonra köpürtme işlemlerleri farklı süreler için tatbik edilerek köpük oluşum aşamları tespit edilmiştir.

4- Üretilen alüminyum köpüklerde hücre stabilitesini sağlanabilmek için SiCp tozlarından farklı oranlarda katılmış Al-TiH₂ karışıının vizekitesini artırmış ve takviye oranının hücre büyüklüğüne etkisi ve hücrelerin yapışıcısında dağılımı gözlenmiştir.
5.2. Karakterizasyon

5.2.1. Özgül ağrılıkların tespit edilmesi

5.2.2. Mikro yapı inceleme

Kompozit köpük malzemelerde metalografik incelemeler için numune hazırlanmak oldukça zor bir işlemidir. Yumuşak olan matris fazı ile beraber farklı sertlikteki takviyelerin birlikte parlatılma zararının kaynaklanan bir güçlük söz konusudur. Ayrıca malzeme içindeki gözenekler, parlatma işlemi zorlaştırılmıştır. Takviye ile matris fazını aynı düzleme getirmek, takviye taneciklerini yerinden oynatmadan veya sökmeden bu işleme gerçekleştirmek oldukça fazla tecrübe ve dikkat gerektirmektedir. Seçilen numuneler sırasıyla 280, 400, 600, 800, 1000, 1200, 2000 ve 4000 Mesh SiC zımparasından geçirildikten sonra yine sırası ile uygun keçeler kullanılarak 6μm, 3μm, 1μm diamond paste ile parlatılmış, son olarak da kolloidal silika ile parlatılarak mikro yapı incelemleri için hazırlanmıştır.

Hazırlanan numunelerde gözenekli yapıda homojen dağılım sağlanp sağlanamadığı ve takviye malzemesinin hücre duvarlarında homojen dağılıp dağılmadığını, malzeme içinde oluşan farklı yapıdaki bileşikleri tespit etmek amacı ile
optik laboratuvar mikroskobu ve yarı kantitatif element analiz sistemine sahip, JOEL-FEG-SEM / INCA/ EDS tarama elektron mikroskobu kullanılarak incelenmiştir.
6. DENEYSEL SONUÇLAR VE DEĞERLENDİRME

6.1. TiH₂ Tozlarının Isıl İşlemi

Şekil 6.1. TiH₂ tozlarının isıl işlem süresine ve sıcaklığa bağlı olarak renk değişimi a) Isıl işlemesiz b) 480°C’ de 180dk. c) 500°C’ de 180dk. d) 520°C’ de 90dk e) 520°C’ de 180 dk f) 520°C’ de 360 dk [1]

Isıl işlem görmüş TiH₂ tozlarının renk değişimleri Şekil 6.2.’de, fiziksel özellikleri ve kimyasal kompozisyonları Tablo 5.3.’de verilmiştir. 480 °C de 180 dakika bekletilen tozlar farklı tane büyüklüklerine göre de farklı renkler almıştır. Ayrıca isıl işlem süresince tozların ağırlıklarının %5 ile %10 arasında artış gösterdiği saptanmıştır. Incelenen literatür çalışmalarında toz ağırlıklarındaki artış oranının yaklaşık %7 olarak verildiği dolayısıyla elde edilen deney sonuçlarının bulunan artış değerleri ile uyumlu olduğu görülmüştür (Behrendt v.d., 2006).
6.2. Kalıp Malzemesi Belirlenmesi İçin Deneme Sonuçları

Kullanılan kalıp malzemesinin türüne göre köpük malzemenin hücre yapısı ve dağılımında farklılıklar gözlenmiştir. İşlem için çelik, grafit ve gaz beton olmak üzere üç farklı ısı iletim katsayısına sahip malzeme kullanılmıştır.

Çelik kalıplarda ısı transferi hızlı gerçekleştiği için köpürme hızlı olmakta ancak yarı katı sıcaklık aralığında yeterli süre kalamadığı için karışım hızlı sıvı hale geçmektedir. Köpürme işlemi sıvı metal içinde gerçekleştiğinden dolayı yeterli vızkoziteye sahip olmayan sıvı metal, oluşan gaz kabarcıklarını tutamamakta ve kalıbın özellikle metale temas ettiği bölgelerinde drenaj oluşmakta veya yapı içinde kalması gereken gaz sıvı metalden ayrılmaktadır. (Şekil 6.3.)

Ayrıca sıvı içinde köpürme gerçekleştiği için hücre stabilitesi sağlanamamakta ve zayıf hücre duvarlarına sahip homojen olmayan köpük yapı oluşmaktadır. Grafit kalıplarda da benzer sonuçlar görülmüş olup köpürtme işlemlerini için ısı transfer katsayısını düşyük gaz beton malzemenin yapılmış kalıplar ile daha uygun sonuçlar elde edilmiştir (Şekil 6.4.).
Şekil 6.3. Grafit kalıpta oluşturulan Alüminyum köpük malzeme ve kesiti

Şekil 6.4. Gaz beton kalıpta oluşturulan alüminyum köpük malzeme ve kesiti
6.3. Özgül Ağırlıklar ve Gözenek Oranları

Tablo 6.1. Özgül ağırlıklar ve rölatif yoğunluklar (deneyler T800 °C yazan haricinde750 °C de yapılmıştır. “İ”nin yanındaki rakam %TiH2 takviyesini, “S”ın yanındaki rakam %SiC takviyesini, “iş” tozun sıralandığından geçirildiğini belirtmektedir).

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ti1S20-işl 8dk</td>
<td>0,588</td>
<td>0,220</td>
<td>Ti1S20-0420-12dk</td>
<td>0,379</td>
<td>0,141</td>
</tr>
<tr>
<td>Ti1S20-işl 10dk</td>
<td>0,399</td>
<td>0,149</td>
<td>Ti1S10-003B-8dk</td>
<td>0,618</td>
<td>0,231</td>
</tr>
<tr>
<td>Ti1S20-işl 12dk</td>
<td>0,388</td>
<td>0,145</td>
<td>Ti1S10-003B-10dk</td>
<td>0,652</td>
<td>0,244</td>
</tr>
<tr>
<td>Ti1S0-işl 8dk</td>
<td>0,497</td>
<td>0,186</td>
<td>Ti1S10-003B-12dk</td>
<td>0,550</td>
<td>0,205</td>
</tr>
<tr>
<td>Ti1S0-işl 10dk</td>
<td>0,497</td>
<td>0,186</td>
<td>Ti1S10-003B-8dk</td>
<td>0,769</td>
<td>0,288</td>
</tr>
<tr>
<td>Ti1S0-işl 12dk</td>
<td>0,410</td>
<td>0,153</td>
<td>Ti1S10-003B-10dk</td>
<td>0,662</td>
<td>0,247</td>
</tr>
<tr>
<td>Ti1S0 10dk</td>
<td>0,389</td>
<td>0,145</td>
<td>Ti1S10-003B-12dk</td>
<td>0,683</td>
<td>0,255</td>
</tr>
<tr>
<td>Ti1S20 8dk</td>
<td>0,324</td>
<td>0,121</td>
<td>Ti1S20-003B-8dk</td>
<td>0,613</td>
<td>0,229</td>
</tr>
<tr>
<td>Ti1S20 10dk</td>
<td>0,380</td>
<td>0,142</td>
<td>Ti1S20-003B-10dk</td>
<td>0,773</td>
<td>0,289</td>
</tr>
<tr>
<td>Ti1S2 12dk</td>
<td>0,311</td>
<td>0,116</td>
<td>Ti1S20-003B-12dk</td>
<td>0,960</td>
<td>0,359</td>
</tr>
<tr>
<td>Ti1S10-işl 8dk</td>
<td>0,704</td>
<td>0,263</td>
<td>Ti1S10-1020-8dk</td>
<td>0,648</td>
<td>0,242</td>
</tr>
<tr>
<td>Ti1S10-işl 10dk</td>
<td>0,683</td>
<td>0,255</td>
<td>Ti1S10-1020-10dk</td>
<td>0,521</td>
<td>0,195</td>
</tr>
<tr>
<td>Ti1S10-işl 12dk</td>
<td>0,482</td>
<td>0,180</td>
<td>Ti1S10-1020-12dk</td>
<td>0,499</td>
<td>0,186</td>
</tr>
<tr>
<td>Ti1S10 8dk</td>
<td>0,473</td>
<td>0,177</td>
<td>Ti1S10-1020-8dk</td>
<td>0,334</td>
<td>0,125</td>
</tr>
<tr>
<td>Ti1S10 10dk</td>
<td>0,380</td>
<td>0,142</td>
<td>Ti1S10-1020-10dk</td>
<td>0,371</td>
<td>0,138</td>
</tr>
<tr>
<td>Ti1S10 12dk</td>
<td>0,413</td>
<td>0,154</td>
<td>Ti1S10-1020-12dk</td>
<td>0,450</td>
<td>0,168</td>
</tr>
<tr>
<td>T800°C Ti1S20 8Dk</td>
<td>0,900</td>
<td>0,337</td>
<td>Ti1S10-1020-8dk</td>
<td>0,493</td>
<td>0,184</td>
</tr>
<tr>
<td>T800 °C Ti1S20 10dk</td>
<td>0,665</td>
<td>0,249</td>
<td>Ti1S10-1020-10dk</td>
<td>0,260</td>
<td>0,097</td>
</tr>
<tr>
<td>T800 °C Ti1S20 12dk</td>
<td>0,616</td>
<td>0,230</td>
<td>Ti1S10-1020-12dk</td>
<td>0,290</td>
<td>0,108</td>
</tr>
<tr>
<td>Ti1S10-0420-8dk</td>
<td>0,564</td>
<td>0,211</td>
<td>Ti1S10-1020-8dk</td>
<td>0,408</td>
<td>0,152</td>
</tr>
<tr>
<td>Ti1S10-0420-10dk</td>
<td>0,365</td>
<td>0,136</td>
<td>Ti1S10-1020-10dk</td>
<td>0,772</td>
<td>0,289</td>
</tr>
<tr>
<td>Ti1S10-0420-12dk</td>
<td>0,418</td>
<td>0,156</td>
<td>Ti1S10-1020-12dk</td>
<td>0,575</td>
<td>0,215</td>
</tr>
<tr>
<td>Ti1S10-0420-8dk</td>
<td>0,300</td>
<td>0,112</td>
<td>Ti0,5S20 8dk</td>
<td>0,424</td>
<td>0,158</td>
</tr>
<tr>
<td>Ti1S10-0420-10dk</td>
<td>0,249</td>
<td>0,093</td>
<td>Ti0,5S20 10dk</td>
<td>0,301</td>
<td>0,112</td>
</tr>
<tr>
<td>Ti1S10-0420-12dk</td>
<td>0,346</td>
<td>0,129</td>
<td>Ti0,5S20 12dk</td>
<td>0,378</td>
<td>0,141</td>
</tr>
<tr>
<td>Ti1S20-0420-8dk</td>
<td>0,482</td>
<td>0,180</td>
<td>Ti2S20 8dk</td>
<td>0,456</td>
<td>0,170</td>
</tr>
<tr>
<td>Ti1S20-0420-10dk</td>
<td>0,590</td>
<td>0,220</td>
<td>Ti2S20 10dk</td>
<td>0,355</td>
<td>0,132</td>
</tr>
<tr>
<td>Ti1S20-0420-12dk</td>
<td>0,550</td>
<td>0,205</td>
<td>Ti2S20 12dk</td>
<td>0,368</td>
<td>0,137</td>
</tr>
<tr>
<td>Ti1S20-0420-8dk</td>
<td>0,480</td>
<td>0,179</td>
<td>Ti0,5S5</td>
<td>0,572</td>
<td>0,214</td>
</tr>
<tr>
<td>Ti1S20-0420-10dk</td>
<td>0,643</td>
<td>0,240</td>
<td>Ti0,5S10</td>
<td>0,689</td>
<td>0,258</td>
</tr>
</tbody>
</table>
6.4. Proses Değişkenlerinin Belirlenmesi

6.4.1. Zamanın Yoğunluk Değişimine ve Köpük Oluşumuna Etkisi

Metal köpük üretme düzeneğinde koruyucu gaz altında yapılan karıştırma ve köpürtme işlemlerinde gözenek oluşumu Şekil 6.5.’te görüldüğü gibi zamana bağlı olarak farklı aşamaldan geçmektedir. Birinci aşamada yarı katı AlMg3 alaşım içersine katılan TiH2 gaz salma sıcaklığına gelir ve (~450 ºC) malzeme içersinde gaz salınımı başlar (Şekil 6.5.a.). İkinci aşamada gaz salınımı hızlanır ve artan basınçla gözenekler büyür (Şekil 6.5.b.). Üçüncü aşamada gözenek iç basıncı zayıf hücre duvarlarını zorlayarak gözenekler birleşerek büyür (Şekil 6.5.c.). Eğer hücre duvarları yeterli dayana sahip olursa, hücreler TiH2’nin bünyesinde barındığı tüm H2 gazını salana kadar birleşmeden büyümeye devam eder. Daha sonra sabit sıcaklıkta beklemeye devam edilirse, atmosfer basınçının etkisiyle, köpük malzeme üstünde çökmenler görülmeye başlar (Şekil 6.5.d.).

Şekil 6.5. zamanın yoğunluk değişimine ve köpük oluşumuna etkisi

Şekil 6.6. 750ºC’de, 1% TiH2 ve 20% SiC takviyeli, a) 8dk, b) 10 dk. ve c) 12, dk. bekletilmiş köpük numuneler, ρ1= 0,624, ρ2= 0,420, ρ3= 0,311
Şekil 6.6.’da 750 °C sıcaklıkta %20 SiC takviyeli AlMg3 ahalimina, 1% oranında TiH₂ katılmış ve sırasıyla 8,10 ve 12 dakika bekletilmiştir. Sonuç olarak 8. dakikada homojen TiH₂ ve SiC dağılımı gerçekleştiğinden, gözenek yapısı yaklaşık olarak eş büyüklüklerde oluşmuş ve homojen olarak yapı içerisinde dağılmıştır. 10. dakikada gözenekler büyümeye başlamış ve 12. dakikada aşırı büyümuş ve birleşmiş gözenekler oluşmuştur. Sabit sıcaklıkta tutma süresi arttıkça, hücre duvarları incelmiştir ve artan iç gaz basıncına yenilerek hücreler birbirleriyle birleşmiştir. Köpük malzeme lineer genleşerek, başlangıç hacminin yaklaşık 5 katına ulaşmıştır. Aynı zamanda yoğunluklar da belirgin bir şekilde azalmıştır. Belirli bir süreyi aşan köpük numunelerde köpük yapısı bozulmaya başladığı ve düşensiz bir hal aldığı gözlemlenmiştir.

Şekil 6.7. 750°C’de, 1% TiH₂ ve 20% SiC takviyeli , 8dk, 10 dk., 12, dk. bekletilmiş numuneler (isıl işlemli), \(\rho_1=0,588, \rho_2=0,399, \rho_3=0,288\)

Şekil 6.8. . 750°C’de, 1% TiH₂ ve 10% SiC takviyeli, 8dk, 10 dk., 12, dk. bekletilmiş numuneler (isıl işlemli), \(\rho_1=0,704, \rho_2=0,683, \rho_3=0,482\)

Şekil 6.6., Şekil 6.7. ve Şekil 6.8.’de görüldüğü gibi köpürtme zamanının artmasıyla birlikte yoğunluk azalmaktadır. Belirli bir süreyi aşan köpük numunelerde köpük yapısının bozulmaya başladığı ve düşensiz bir hal aldığı gözlemlenmiştir.
6.4.2. TiH₂ Miktaranın Yoğunluk Değişimine ve Köpük Oluşumuna Etkisi

Şekil 6.9. 750 °C’de, 0,5% TiH₂ ve 20% SiC takvikeli, 8 dk, 10 dk., 12, dk. Bekletilmiş numuneler,
ρ₁= 0,424, ρ₂= 0,378, ρ₃= 0,315

Şekil 6.10. 750 °C’de, 1% TiH₂ ve 20% SiC takvikeli, 8 dk, 10 dk., 12 dk. bekletilmiş numuneler,
ρ₁= 0,324, ρ₂= 0,320, ρ₃= 0,311

Şekil 6.11. 750 °C’de, 1,5% TiH₂ ve 20% SiC takvikeli, 8 dk, 10 dk., 12 dk.bekletilmiş numuneler

Şekil 6.12. 750 °C’de, 2% TiH₂ ve 20% SiC takvikeli, 8 dk, 10 dk., 12 dk.bekletilmiş numuneler,
ρ₁= 0,456, ρ₂= 0,395, ρ₃= 0,368
Şekil 6.9., Şekil 6.10., Şekil 6.11. ve Şekil 6.12.’de TiH₂ miktarlarının artması ile zamana bağlı olarak köpük yapının değişimi göstermiştir. Şekil 6.9.’de 0,5% TiH₂ ilavesi ile homojen hücre yapısı gözlenirken TiH₂ oranlarının artması ile daha kısa sürelerde belirli hücre büyüklüklerine ulaşıldığı ve daha yüksek iç basınçlar oluştuğundan daha fazla hücre birleşmeleri olduğu ve köpük malzemenin daha kısa sürede düzensiz gözenek yapısı oluştuğunu gözlemlemiştir.

6.4.3. SiC Miktarının Yoğunluğa ve Köpük Yapısına Etkisi

Metal köpük üretiminde genellikle SiC katılarak, köpük stabilitesi sağlanmaya çalışılmaktadır. Bu çalışmada yarı-katı karışıma ve yarı-katıdan köpük oluşturma yöntemi uygulanmış ve SiC takviyesinin hücre dağılımına etkileri incelenmiştir. Şekil 6.8.a.’da SiC takviye katılmamış AlMg₃ alaşımı köpürtülmeye çalışılmıştır. İçine 1% oranında TiH₂ katılmıştır. Şekilden görüldüğü gibi oluşan gaz kabarcıkları hücre duvarları tarafından engellenmediği için, hızla birbirleriyle birleşmiş, büyümüş ve çökmüştür. Aynı zamanda malzemenin altı kısmında drenaj oluşmuştur. Şekil 6.8.b.’de aynı oranda TiH₂ katılmasıyla rağmen 10% SiC takviyesi nedeni ile homojen bir gözenek dağılımı gözlenmiştir ve drenaj oluşmamıştır. Ancak lineer genleşme en fazla 2 ya da 3 katına kadar gerçekleşmiştir. Şekil 6.8.c.’de yine 1% TiH₂ ile köpürtülmüş AlMg₃ alaşımı görülmekte, içinde 20% oranında SiC içerdiginden dolayı, daha fazla bir lineer genleşme, homojen gözenek dağılımı ve daha düşük rölatif yoğunluk saptanmıştır. SiC takviyesi ile lineer genleşmenin arttığı ve drenaj oluşumunun önleniği gözlemiştir.
6.4.4. Döküm Sıcaklığının Köpük Oluşumuna Etkisi

Şekil 6.14. 750°C ve 800°C de üretilmiş 1%TiH2 ve 20% SiC takviyeli numuneler
6.4.5. Farklı Boyuttaki TiH₂ Tozlarının Etkisi

TiH₂ boylarının köpük oluşumuna etkisini incelemek amacıyla 4 farklı boyutta TiH₂ satın alınmış ve her birinden 1% oranında katlarak AlMg3 alaşımından köpük oluşurma denemeleri yapılmıştır. Çok küçük boyuttaki tozlar hemen alev alarak daha malzeme içерisine karışmadan gaz salınımları gerçekleştirdiğinden köpük oluşumada başarıya ulaşlamamıştır. 100 μm büyüklüğündeki tozlarla köpük oluşumu başarılı ancak fazla miktardadır ve düzensiz gaz salınımda nedeni ile kontrolsüz büyüyen hücrelere sahip düzensiz yapıdaki köpük malzeme elde edilmiştir. En iyi sonuç 44 μm boyuttundaki TiH₂ ile elde edilmiştir. Şekil 6.15.a'da 44 μm TiH₂ kullanarak üretilen alüminyum köpük malzeme görülmektedir. Oldukça düzgün eşiğ hücrelere sahip ve lineer genleşme fazla bir yapı elde edilmiştir.

![Şekil 6.15. 44 μm, 30 μm, 4 μm ve 100 μm TiH₂ Tozlarıyla Üretilen Köpükler](image)

6.4.6. TiH₂ Tozlarına Isıl İşlem Yapılanın Köpük Oluşumuna Etkisi

Şekil 6.16. 750 °C’de, 44µm boyutunda 1% TiH₂ ve 20% SiC takviyeli, (a) isıl işlem görmüş, (b) isıl işlem görmemiş numuneler

Şekil 6.17. 750 °C’de, 30µm boyutunda 1% TiH₂ ve 20% SiC takviyeli, (a) isıl işlem görmüş, (b) isıl işlem görmemiş numuneler

Şekil 6.18. 750 °C’de, 4µm boyutunda 1% TiH₂ ve 20% SiC takviyeli, (a) isıl işlem görmüş, (b) isıl işlem görmemiş numuneler

Şekil 6.19. 750 °C’de, 100µm boyutunda 1% TiH₂ ve 20% SiC takviyeli, (a) isıl işlem görmüş, (b) isıl işlem görmemiş numuneler
6.4.7. SiC Boyutunun Etkisi

Yapılan çalışmada, 500 mesh ve 1200 mesh olmak üzere iki farklı boyutta SiC takviye kullanılmıştır. SiC takviye hücre stabilitesini arttırmak ve drenaj oluşumunu engellemek amacıyla yapılmıştır. 500 mesh boyutundaki takviyelerle homojen dağılma sahip hücreler elde edilmiş drenaj oluşmamıştır. 1200 mesh takviye çok küçük boyutta olduğunda karışırma esnasında güçlüklerle karşılaşılmış, karıştırılabilen miktarı homojen gözenek oluşturmuş ancak 500 mesh takviyeli numuneye nazaran daha küçük boyutta hücreler oluşmuştur. Ancak karıştırma sırasında malzeme içerisinde çok miktarda topaklanmalar ve malzeme hataları meydana gelmiştir.

Şekil 6.20. (a) 500 mesh ve (b) 1200 mesh boylarında SiC takviye edilerek üretilen numuneler.

6.5. Mikro Yapı İncelemeleri

Şekil 6.21. AlMg₃ / takviyetsiz alüminyum köpüğün hücre çeperi mikro yapı fotoğrafı

(Şekil 6.22. (a) AlMg₃ /SiCₚ 10% ve (b) AlMg₃ /SiCₚ 20% takviyeli alüminyum köpüklerin hücre çeperi mikro yapı fotoğrafları

Şekil 6.23. AlMg3 / 20% SiC₃ alüminyum kompozit köpüğün hücre duvarı mikro yapı fotoğrafları
6.6. Tarama Elektron Mikroskobu EDS Analiz Sonuçları

Alüminyum kompozit köpüklerin SEM analizleri sonucunda hücre iç çeperlerinde az miktarda Al₂O₃ oluşumları gözlemiştir. Genelde hücre duvarlarında şekil 6.24’te görüldüğü gibi AlMg₃ alaşımı belirlenmiştir.

<table>
<thead>
<tr>
<th>Maddeler</th>
<th>Al Madde</th>
<th>Mg Madde</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>42.06</td>
<td>53.06</td>
</tr>
<tr>
<td>Al</td>
<td>3.48</td>
<td>10.8</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>35.38</td>
<td>43.04</td>
</tr>
<tr>
<td>Toplam</td>
<td>100.00</td>
<td>100.00</td>
</tr>
</tbody>
</table>

Şekil 6.24. Takviyesiz alüminyum köpüğün EDS analizi
Şekil 6.25. ’de TiH₂ bileşinin hüynesindeki H₂ gazını saldiktan sonra hücre içinde SiC taneleri arasında kalan Titanyum parçacığı görülmektedir.

Şekil 6.25. 20% SiC takviyeli alüminyum kompozit köpüğün hücre çeperinde yer alan (a) titanyum taneciğinin (b) SiC taneciklerinin EDS analizi

(a) (b)
Şekil 6.26. Takviyesiz alüminyum köpğün SEM fotoğrafları

Şekil 6.27.’de 20% SiC ile takviye edilmiş Alüminyum kompozit köpğün kırık yüzeyinden alınan SEM fotoğrafları görülmektedir. 6.27.a’da üç hücre arasındaki birleşme bölgesinden SiC tanelerinin birikerek hücre duvarını güçlendirdiği ve hücrelerin birleşerek büyümesine engel olduğunu görülmektedir. 6.27.b’de alüminyum yapısı içerisindeki SiC taneleri görülmektedir.

(a) (b)
Şekil 6.27. 20% takviyeli alüminyum köpğün SEM fotoğrafları
Sonuçlar

Bu çalışmada AlMg3 alüminyum ayağılı SiCp tozları ve TiH₂ kullanılarak kompozit metal köpük üretimi gerçekleştirilmiş. Proses parametrelerinin değişiminden, metal köpüğü hücre yapısı ve dağılımına etkileri araştırılmış elde edilen sonuçlar özetlenmiştir:

1- Yarı-katı sıcaklık aralığında AlMg3 ayağılı TiH₂ eklenerek metal köpük üretimi başarıyla gerçekleştirilmiş. Lineerleşme yaklaşık 5 kat olarak gerçekleşmiş ve malzeme hacimsel olarak 85-90% arasında AlMg3 ayağılı, yarı-katı sıcaklık aralığında farklı oranlarda SiCp homojen olarak kararlılabilmştir.

2- Takviye ve köpürtücü TiH₂ tozlarının alüminyum içine karıştırılma problemini yarı-katı sıcaklık aralığında sağlanan viskoz yapı sayesinde aşılmuştur. Gözenek yapısı ve boyutları incelendiğinde, takviyenin ve köpürtücü TiH₂'nin köpük yapısı içinde düzgün dağılımının sağlanıldığı görülmiştir.

3- Takviye oranındaki artışla birlikte yoğunluğun azaldığı, metal köpüğün lineerleşme miktarının arttığı, gözenek boyutlarının küçüldüğü ve düzgün dağılım sergilediği görülmuştur.

4- SiC takviyesiyle SiC tanecilerin gözenekler etrafında toplanarak gözeneklerin aşırı büyümelerine ve birleşmesine izin vermediği, hücre duvarını güçlendirdiği, metal köpük içerisinde drenaj oluşumu engellediği gözlemmiştir. SiC parçacık boyutu küçüldükçe daha küçük hücreli köpük yapı oluşmaktadır.

5- AlMg3 ayağılı için yarı-katı sıcaklığın 640-660 °C olduğu belirlenmiştir. 750 °C firin sıcaklığında optimum gözenek boyutu ve dağılımına ulaşılmaktadır ve bu sıcaklığın üzerindeki köpürtme işlemlerinde köpük stabilitiesinin bozuluğu ve drenaj oluştuğu görülmuştur.
6- Köpük oluşumunun zamana bağlı olarak geliştiği, köpürtme sürelerinin artmasıyla yoğunluğun azaldığı belli bir süreyi aşan uygulamalarda köpük yapısının bozulmaya başladığı ve düzensiz bir hal aldığı gözlemlenmiştir.

7- TiH₂’nin miktarının artmasının stabiliteye olumlu bir etkisi olmamış, hatta düzensiz gözenek yapısı oluşturmuştur. En uygun miktar 0,5% olarak gözlemlenmiştir. Farklı boyutlardaki TiH₂ tozlarıyla denemeler yapılmış, en stabil oluşum 44 μm ile gözlenmiştir.

8- TiH₂ tozlarına ısı işlem uygulamak avantaj sağlamamış aksine köpürtme gücünü azaltmıştır.
KAYNAKLAR

F. Behrendt, J. Banhart, H. Schubert, 2006, “Characterisation and Optimisation of Blowing Agent For Making Improved Metal Foams”.

S. Esmaelzadeh, A. Simchi, 2008, “Foamability and Compressive Properties of AlSi7-3 vol.% SiC-0.5 wt.% TiH₂ Powder Compact”, Materials Letters 62, 1561-1564, Department of Material and Engineering, Sharif University of Technologies, Iran.

